A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge

文献类型: 外文期刊

第一作者: Li, Dan

作者: Li, Dan;Wu, Panxue;Liu, Huanan;Feng, Tao;Yang, Wenping;Ru, Yi;Li, Pan;Qi, Xiaolan;Shi, Zhengwang;Zheng, Haixue;Li, Dan;Wu, Panxue;Liu, Huanan;Feng, Tao;Yang, Wenping;Ru, Yi;Li, Pan;Qi, Xiaolan;Shi, Zhengwang;Zheng, Haixue

作者机构:

关键词: African swine fever virus; QP383R; QP509L; porcine alveolar macrophages

期刊名称:JOURNAL OF VIROLOGY ( 影响因子:6.549; 五年影响因子:5.78 )

ISSN: 0022-538X

年卷期: 2022 年 96 卷 1 期

页码:

收录情况: SCI

摘要: African swine fever (ASF), a devastating infectious disease in swine, severely threatens the global pig farming industry. Disease control has been hampered by the unavailability of vaccines. Here, we report that deletion of the QP509L and QP383R genes (ASFV-Delta QP509L/QP383R) from the highly virulent ASF virus (ASFV) CN/GS/2018 strain results in complete viral attenuation in swine. Animals inoculated with ASFV-Delta QP509L/QP383R at a 10(4) 50% hemadsorbing dose (HAD(50)) remained clinically normal during the 17-day observational period. All ASFV-Delta QP509L/QP383R-infected animals had low viremia titers and developed a low-level p30-specific antibody response. However, ASFV-Delta QP509L/QP383R did not induce protection against challenge with the virulent parental ASFV CN/GS/2018 isolate. RNA-sequencing analysis revealed that innate immune-related genes (Ifnb, Traf2, Cxcl10, Isg15, Rantes, and Mx1) were significantly lower in ASFV-Delta QP509L/QP383R-infected than in ASFV-infected porcine alveolar macrophages. In addition, ASFV-Delta QP509L/QP383R-infected pigs had low levels of interferon-beta (IFN-beta) based on enzyme-linked immunosorbent assay (ELISA). These data suggest that deletion of ASFV QP509L/383R reduces virulence but does not induce protection against lethal ASFV challenge. IMPORTANCE African swine fever (ASF) is endemic to several parts of the word, with outbreaks of the disease devastating the swine farming industry; currently, no commercially available vaccine exists. Here, we report that deletion of the previously uncharacterized QP509L and QP383R viral genes completely attenuates virulence in the ASF virus (ASFV) CN/GS/2018 isolate. However, ASFV-Delta QP509L/QP383R-infected animals were not protected from developing an ASF infection after challenge with the virulent parental virus. ASFV-Delta QP509L/QP383R induced lower levels of innate immune-related genes and IFN-beta than the parental virus. Our results increase our knowledge of developing an effective and live ASF attenuated vaccine.

分类号:

  • 相关文献
作者其他论文 更多>>