The Mgv1-Rlm1 axis orchestrates SAGA and SWI/SNF complexes at target promoters
文献类型: 外文期刊
第一作者: Xu, Chaoyun
作者: Xu, Chaoyun;Zhang, Yueqi;Yin, Yanni;Chen, Yun;Liu, Zunyong;Ma, Zhonghua;Xu, Chaoyun;Zhang, Chengqi;Chen, Li;Ma, Zhonghua
作者机构:
期刊名称:NUCLEIC ACIDS RESEARCH ( 影响因子:13.1; 五年影响因子:16.8 )
ISSN: 0305-1048
年卷期: 2025 年 53 卷 13 期
页码:
收录情况: SCI
摘要: The SWI/sucrose non-fermentable (SWI/SNF)-facilitated removal of nucleosomes and Spt-Ada-Gcn5 acetyltransferase (SAGA) complex-mediated histone acetylation are crucial for the activation of transcription initiation. However, the mechanism by which these two complexes coordinate to regulate gene expression involved in cell wall remodeling during infection process or in response to external stimuli remains largely unknown in plant pathogenic fungi. Here, we demonstrate that the cell wall integrity (CWI) pathway is activated under toxin (deoxynivalenol)-inducing conditions in the phytopathogenic fungus Fusarium graminearum. This treatment results in the phosphorylation and nuclear translocation of the mitogen-activated protein kinase FgMgv1 in the CWI signaling pathway. Once in the nucleus, the activated FgMgv1 phosphorylates the downstream transcription factor FgRlm1, which binds to a 12- or 14-bp cis-element in the promoters of target genes. Notably, FgMgv1 forms a polymer and interacts with FgRlm1 via its kinase domain. Crucially, this polymerization enables FgMgv1 to recruit both the SWI/SNF and SAGA complexes simultaneously through its C-terminal domain at the target promoters. This coordinated action among FgMgv1, FgRlm1, SWI/SNF, and SAGA ultimately facilitates the transcriptional activation of target genes. Collectively, these findings illuminate a regulatory framework in which Mgv1-Rlm1 axis serves as a key regulatory hub, integrating CWI signals with epigenetic modifications to ensure transcriptional responsiveness to external stimuli.
分类号:
- 相关文献
作者其他论文 更多>>
-
Absorption and transport mechanism of colloidal nanoparticles (CNPs) in lamb soup based on Caco-2 cell
作者:Fu, Jianing;Liu, Ling;Fu, Jianing;Li, Shaobo;Xu, Meizhen;Chen, Li;Zhang, Dequan
关键词:Colloidal nanoparticles; Caco-2 cell; Lamb soup; Absorption mechanism; Transport
-
Novel spectral indices and transfer learning model in estimat moisture status across winter wheat and summer maize
作者:Li, Zongpeng;Cheng, Qian;Zhai, Weiguang;Mao, Bohan;Li, Yafeng;Ding, Fun;Zhou, Xinguo;Chen, Zhen;Chen, Li;Zhang, Bo
关键词:Fuel Moisture Content; algorithms; BRNN; transfer model
-
Apoptosis and its role in postmortem meat tenderness: A comprehensive review
作者:Liu, Chongxin;Zhang, Dequan;Chen, Li;Huang, Caiyan;Blecker, Christophe;Huang, Caiyan;Zhao, Yingxin;Roy, Bimol C.;Bruce, Heather L.;Xiang, Can;Zhang, Yanyan
关键词:Meat tenderness; Myofibrillar proteins; Mitochondrial apoptosis pathway; Postmortem muscle
-
Analysis of bioactive substances in mutton and their effects on the quality of minced mutton
作者:Cheng, Chengpeng;Xie, Xinru;Li, Shaobo;Chen, Pengyu;Huang, Caiyan;Zheng, Xiaochun;Chen, Li;Zhang, Dequan
关键词:Mutton; Bioactive substances; Flavonoids; Calcium ions; Minced mutton quality
-
Dimerization among multiple NAC proteins mediates secondary cell wall cellulose biosynthesis in cotton fibers
作者:Chen, Feng;Qiao, Mengfei;Chen, Li;Liu, Min;Luo, Jingwen;Gao, Yanan;Li, Mengyun;Cai, Jinglong;Huang, Gengqing;Xu, Wenliang;Persson, Staffan;Persson, Staffan;Xu, Wenliang
关键词:cotton fiber; secondary cell wall; cellulose; transcriptional regulation; NAC domain proteins; dimerization; protein complex
-
Enhancing winter wheat plant nitrogen content prediction across different regions: Integration of UAV spectral data and transfer learning strategies
作者:Li, Zongpeng;Cheng, Qian;Zhai, Weiguang;Mao, Bohan;Li, Yafeng;Zhou, Xinguo;Chen, Zhen;Chen, Li;Yang, Jie
关键词:Gaussian process regression; Unequal-weight strategy; Plant nitrogen content; Transfer learning
-
Identification of characteristic lipids of Tan lamb and their potential health benefits
作者:Xu, Le;Li, Shaobo;Chen, Pengyu;Gu, Minghui;Yang, Qi;Chen, Li;Zhang, Dequan
关键词:Lipid profile; Sheep; Lipid species; Precision nutrition; Functional lipids