Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants
文献类型: 外文期刊
第一作者: Ruan, Jianyun
作者: Ruan, Jianyun;Gerendas, Joska;Hardter, Rolf;Sattelmacher, Burkhard
作者机构:
关键词: ammonium;growth;nitrate;nitrogen form;nitrogen uptake;root-zone pH;tea;Camellia sinensis;AMMONIUM NUTRITION;NITRATE;MAIZE;ASSIMILATION;TRANSPORT;L.;NITRIFICATION;RICE;CARBOHYDRATE;ABSORPTION
期刊名称:ANNALS OF BOTANY ( 影响因子:4.357; 五年影响因子:5.488 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Background and Aims Tea (Camellia sinensis) is considered to be acid tolerant and prefers ammonium nutrition, but the interaction between root zone acidity and N form is not properly understood. The present study was performed to characterize their interaction with respect to growth and mineral nutrition. Methods Tea plants were hydroponically cultured with NH4+, NO3- and NH4+ + NO3-, at pH 4.0, 5.0 and 6.0, which were maintained by pH stat systems. Key Results Plants supplied with NO3- showed yellowish leaves resembling nitrogen deficiency and grew much slower than those receiving NW or NH4+ + NO3- irrespective of root-zone pH. Absorption of NHT was 2- to 3.4-fold faster than N03 when supplied separately, and 6- to 16-fold faster when supplied simultaneously. Nitrate-grown plants had significantly reduced glutamine synthetase activity, and lower concentrations of total N, free amino acids and glucose in the roots, but higher concentrations of cations and carboxylates (mainly oxalate) than those grown with NH4+ or NH4+ + NO3-. Biomass production was largest at pH 5.0 regardless of N form, and was drastically reduced by a combination of high root-zone pH and NO3-. Low root-zone pH reduced root growth only in NO3--fed plants. Absorption of N followed a similar pattern as root-zone pH changed, showing highest uptake rates at pH 5.0. The concentrations of total N, free amino acids, sugars and the activity of GS were generally not influenced by pH, whereas the concentrations of cations and carboxylates were generally increased with increasing root-zone pH. 9 Conclusions Tea plants are well-adapted to NH4+-rich environments by exhibiting a high capacity for NH4+ assimilation in their roots, reflected in strongly increased key enzyme activities and improved carbohydrate status. The poor plant growth with NO3- was largely associated with inefficient absorption of this N source. Decreased growth caused by inappropriate external pH corresponded well with the declining absorption of nitrogen.
分类号: Q94
- 相关文献
作者其他论文 更多>>
-
Optimization of nutrient management improves productivity, quality and sustainability of albino tea cultivar Baiye-1
作者:Zhu, Yun;Ma, Lifeng;Geng, Saipan;Ruan, Jianyun;Zhu, Yun;Ma, Lifeng;Ruan, Jianyun;Ma, Lifeng;Ruan, Jianyun
关键词:free amino acid; catechin; organic substitution; nutrient use efficiency (NUE); greenhouse gas emissions; nitrogen nutrition; albino tea cultivar
-
Application of metabolic fingerprinting in tea quality evaluation
作者:He, Yun;Liu, Li;Li, Yan;Zhang, Qunfeng;Ruan, Jianyun;Inostroza, Alvaro Cuadros;Kierszniowska, Sylwia
关键词:Tea grade discrimination; Metabolomics; Organic acids; Lipids; Amino acids; Sensory
-
Aluminum Supplementation Mediates the Changes in Tea Plant Growth and Metabolism in Response to Calcium Stress
作者:Zhang, Hua;Ruan, Jianyun;Zhang, Qunfeng;Song, Yakang;Fan, Zhenglei;Hu, Jianhui
关键词:tea plant; calcium; aluminum; root growth; metabolic profile
-
Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards' Top Rhizosphere Soil
作者:Manzoor;Manzoor;Ma, Lifeng;Ni, Kang;Ruan, Jianyun;Manzoor
关键词:tea plant growth; chlorophyll; integrated fertilization; amino acids; catechins; macro and micronutrients; soil properties
-
Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition
作者:Zhang, Xiangchun;Yang, Xiangde;Ruan, Jianyun;Chen, Hongping
关键词:Epigallocatechin gallate; Nanoselenium fertilizer; Tea quality; Soil quality index; Microbial diversity; Low-abundance taxa
-
Nitrogen transport and assimilation in tea plant (Camellia sinensis): a review
作者:Zhang, Wenjing;Ni, Kang;Long, Lizhi;Ruan, Jianyun;Zhang, Wenjing;Ni, Kang;Ruan, Jianyun
关键词:nitrogen transport; nitrate reduction; ammonia assimilation; NUE; camellia sinensis; challenges and prospects
-
Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation
作者:Jiang, Yanyan;Yang, Xiangde;Ni, Kang;Ma, Lifeng;Shi, Yuanzhi;Ruan, Jianyun;Jiang, Yanyan;Ma, Lifeng;Wang, Yu;Cai, Yanjiang;Ma, Qingxu;Jiang, Yanyan
关键词:N addition; P availability; Phosphatase activities; P-cycling genes; Functional communities; Acidic tea soil