Characterization of the complete chloroplast genome of Chlorophytum comosum (Liliaceae)
文献类型: 外文期刊
第一作者: Peng, Yu-Jiao
作者: Peng, Yu-Jiao;Cui, Xue-Yu;Tan, Meng-Chao;Hu, Lin;Ruan, Hong-Yan;Shao, Yuan-Yuan;Peng, Yu-Jiao;Cui, Xue-Yu;Tan, Meng-Chao;Hu, Lin;Ruan, Hong-Yan;Shao, Yuan-Yuan;Peng, Yu-Jiao;Cui, Xue-Yu;Tan, Meng-Chao;Hu, Lin;Ruan, Hong-Yan;Shao, Yuan-Yuan;Song, En-Liang;Tang, Yu-Juan
作者机构:
关键词: Chlorophytum comosum; complete chloroplast genome; Liliaceae; Illumina sequencing
期刊名称:MITOCHONDRIAL DNA PART B-RESOURCES ( 影响因子:0.658; 五年影响因子:0.674 )
ISSN:
年卷期: 2020 年 5 卷 1 期
页码:
收录情况: SCI
摘要: Chlorophytum comosum is a perennial ornamental plant in the family Liliaceae, it is also a valuable medicinal plant. To enrich the genetic resources of C. comosum, its chloroplast genome was determined by Illumina sequencing data. The chloroplast genome is a typical quadripartite structure with a size of 153,983bp, of which the LSC region is 83,471bp, the SSC region is 18,010bp, and the pair of IR regions is 26,251bp. The overall GC content is 37%. It contains 131 genes, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analyses showed that C. comosum is closely related to Chlorophytum rhizopendulum. However, it can be distinguished from other plants. This study enriches the sequence resources of C. comosum and provides important data for the development of molecular identification markers.
分类号:
- 相关文献
作者其他论文 更多>>
-
ESG-YOLO: A Method for Detecting Male Tassels and Assessing Density of Maize in the Field
作者:Wu, Wendi;Zhang, Yuhang;Wu, Wendi;Zhang, Jianhua;Zhou, Guomin;Zhang, Yuhang;Wang, Jian;Hu, Lin;Zhang, Jianhua;Zhou, Guomin;Wang, Jian;Hu, Lin;Zhou, Guomin
关键词:maize; tassel; target detection; attention mechanism; SPD-Conv; ESG-YOLO; density assessment
-
Dietary Flavonoid Quercetin Supplement Promotes Antiviral Innate Responses Against Vesicular Stomatitis Virus Infection by Reshaping the Bacteriome and Host Metabolome in Mice
作者:Li, Tingting;Zhu, Jinfeng;Zhu, Yinrui;Pei, Pei;Yang, Kai;Hu, Lin;Li, Tingting;Zhu, Jinfeng;Zhu, Yinrui;Pei, Pei;Yang, Kai;Hu, Lin;Li, Tingting;Wu, Chao;Chen, Nannan;Zhu, Jinfeng;Yu, Qifeng;Zheng, Xing;Wang, Kai
关键词:gut microbiota; metabolomics; pro-inflammatory cytokines; quercetin; vesicular stomatitis virus
-
The Identification of a Cell Cycle Regulation Gene Cyclin E from Hong Kong Oysters (Crassostrea hongkongensis) and Its Protein Expression in Response to Salinity Stress
作者:Qiu, Hengtong;Yan, Xiaomin;Hu, Lin;Huang, Yonglin;Ye, Yanni;Wang, Huan
关键词:Hong Kong oyster; cyclin E; salinity stress; Western blotting; molecular cloning
-
Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments
作者:Pan, Pan;Shao, Mingyue;He, Peitong;Hu, Lin;Zhao, Sijian;Zhou, Guomin;Zhang, Jianhua;Pan, Pan;Shao, Mingyue;He, Peitong;Hu, Lin;Zhou, Guomin;Zhang, Jianhua;Pan, Pan;Shao, Mingyue;He, Peitong;Hu, Lin;Huang, Longyu;Zhou, Guomin;Zhang, Jianhua;Huang, Longyu;Zhou, Guomin
关键词:cotton diseases detection; natural environment; deep learning; lightweight; YOLOv8
-
Epigenetic regulation by quercetin: a comprehensive review focused on its biological mechanisms
作者:Zhu, Jinfeng;Cheng, Xiaju;Hu, Lin;Zhu, Jinfeng;Cheng, Xiaju;Hu, Lin;Zhu, Jinfeng;Naumovski, Nenad;Naumovski, Nenad;Naumovski, Nenad;Naumovski, Nenad;Wang, Kai
关键词:DNA methylation; epigenetic; histone modifications; m6A; microRNAs; quercetin
-
Xoo-YOLO: a detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles
作者:Pan, Pan;Hu, Lin;Zhou, Guomin;Zhang, Jianhua;Pan, Pan;Zheng, Xiaoming;Hu, Lin;Zhou, Guomin;Zhang, Jianhua;Guo, Wenlong;Zheng, Xiaoming;Zhou, Guomin
关键词:wild rice; UAV; bacterial blight; disease detection; deep learning; YOLOv8
-
A Novel Method for Filled/Unfilled Grain Classification Based on Structured Light Imaging and Improved PointNet plus
作者:Huang, Shihao;Lu, Zhihao;Shi, Yuxuan;Dong, Jiale;Hu, Lin;Huang, Chenglong;Huang, Shihao;Huang, Chenglong;Huang, Shihao;Huang, Chenglong;Yang, Wanneng
关键词:3D structured light; point cloud segmentation; data enhancement; deep learning; normal vector; grain classification