Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize
文献类型: 外文期刊
第一作者: An, Yixin
作者: An, Yixin;Chen, Lin;Li, Yong-Xiang;Li, Chunhui;Shi, Yunsu;Zhang, Dengfeng;Li, Yu;Wang, Tianyu
作者机构:
关键词: Maize; Kernel row number; Genome-wide association study; Quantitative trait nucleotide; Whole-genome prediction
期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )
ISSN: 1471-2229
年卷期: 2020 年 20 卷 1 期
页码:
收录情况: SCI
摘要: BackgroundKernel row number (KRN) is an important trait for the domestication and improvement of maize. Exploring the genetic basis of KRN has great research significance and can provide valuable information for molecular assisted selection.ResultsIn this study, one single-locus method (MLM) and six multilocus methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB and ISIS EM-BLASSO) of genome-wide association studies (GWASs) were used to identify significant quantitative trait nucleotides (QTNs) for KRN in an association panel including 639 maize inbred lines that were genotyped by the MaizeSNP50 BeadChip. In three phenotyping environments and with best linear unbiased prediction (BLUP) values, the seven GWAS methods revealed different numbers of KRN-associated QTNs, ranging from 11 to 177. Based on these results, seven important regions for KRN located on chromosomes 1, 2, 3, 5, 9, and 10 were identified by at least three methods and in at least two environments. Moreover, 49 genes from the seven regions were expressed in different maize tissues. Among the 49 genes, ARF29 (Zm00001d026540, encoding auxin response factor 29) and CKO4 (Zm00001d043293, encoding cytokinin oxidase protein) were significantly related to KRN, based on expression analysis and candidate gene association mapping. Whole-genome prediction (WGP) of KRN was also performed, and we found that the KRN-associated tagSNPs achieved a high prediction accuracy. The best strategy was to integrate all of the KRN-associated tagSNPs identified by all GWAS models.ConclusionsThese results aid in our understanding of the genetic architecture of KRN and provide useful information for genomic selection for KRN in maize breeding.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effects of different hydrocolloids on the 3D printing and thermal stability of chicken paste
作者:Zhao, Nanqi;Liu, Ziyao;Chen, Lin;Hu, Yayun;Feng, Xianchao;Guo, Chaofan;Han, Minyi;Huang, Feng;Kang, Zhuangli
关键词:Hydrocolloids; 3D printing; Post-processing stability
-
Nitrogen addition alters aboveground C:N:P stoichiometry of plants but not for belowground in an Inner Mongolia grassland
作者:Wang, Ziqi;An, Yixin;Li, Ying;Yu, Qiang;Wang, Jie;Wang, Xu;Wu, Honghui;Yang, Tian;Zhang, Yunlong;Bian, Jianlin;Ren, Haiyan;Lkhagva, Ariuntsetseg
关键词:nitrogen deposition; C:N:P stoichiometry; grassland ecosystem; community level; belowground
-
Comparison of Volatile and Nonvolatile Metabolites in Black Tea under Four Second-Drying Methods Using Widely Targeted Metabolomics
作者:Lan, Tianmeng;Tu, Zheng;Ye, Yang;Zeng, Qingbin;Chen, Lin;Liu, Yueyun;He, Weizhong
关键词:second-drying; black tea; metabolomics; nonvolatile metabolites; volatile metabolites
-
Physiological and transcriptomic analysis reveals the toxic and protective mechanisms of marine microalga Chlorella pyrenoidosa in response to TiO2 nanoparticles and UV-B radiation
作者:Zhu, Lin;Feng, Sulan;Sun, Xuemei;Sui, Qi;Chen, Bijuan;Qu, Keming;Xia, Bin;Zhu, Lin;Sun, Xuemei;Sui, Qi;Chen, Bijuan;Xia, Bin;Feng, Sulan;Li, Yu
关键词:Nanomaterials; UV-B; RNA sequencing; Internalization; Molecular mechanism
-
A genome-wide study of the lipoxygenase gene families in Medicago truncatula and Medicago sativa reveals that MtLOX24 participates in the methyl jasmonate response
作者:Xu, Lei;Zhu, Xiaoxi;Liu, Yajiao;Sod, Bilig;Li, Mingna;Chen, Lin;Kang, Junmei;Yang, Qingchuan;Long, Ruicai;Xu, Lei;Yang, Qingchuan;Yi, Fengyan
关键词:Medicago; Lipoxygenase; Methyl jasmonate; Arabidopsis thaliana; Overexpression
-
The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria
作者:Chen, Lin;Liu, Yunpeng
关键词:rhizobacteria; root exudation; root colonization; root exudate-rhizobacteria interaction
-
The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula
作者:Wang, Xue;Wei, Chunxue;Huang, Hongmei;Kang, Junmei;Chen, Lin;Li, Mingna;Yang, Qingchuan
关键词:Salt stress; ABA signaling; MtHHO3; GARP; Transcription factor