Metabonomic Insights into the Sperm Activation Mechanisms in Ricefield Eel (Monopterus albus)

文献类型: 外文期刊

第一作者: Zhang, Huiying

作者: Zhang, Huiying;Liu, Yang;Zhou, Lingling;Xu, Shaohua;Ye, Cheng;Hu, Guangfu;Tian, Haifeng;Li, Zhong

作者机构:

关键词: sperm activation; metabonomics; energy metabolism; anti-oxidant stress; ricefield eel

期刊名称:GENES ( 影响因子:4.096; 五年影响因子:4.339 )

ISSN:

年卷期: 2020 年 11 卷 11 期

页码:

收录情况: SCI

摘要: In fish, sperm motility activation is one of the most essential procedures for fertilization. Previous studies have mainly focused on the external environmental effects and intracellular signals in sperm activation; however, little is known about the metabolic process of sperm motility activation in fish. In the present study, using ricefield eel (Monopterus albus) sperm as a model, metabonomics was used to analyze the metabolic mechanism of the sperm motility activation in fish. Firstly, 529 metabolites were identified in the sperm of ricefield eel, which were clustered into the organic acids, amino acids, nucleotides, benzene, and carbohydrates, respectively. Among them, the most abundant metabolites in sperm were L-phenylalanine, DL-leucine, L-leucine, lysolecithin choline 18:0, L-tryptophan, adenine, hypoxanthine, 7-Methylguanine, shikimic acid, and L-tyrosine. Secondly, compared to pre-activated sperm, the level of S-sulfo-L-cysteine and L-asparagine were both increased in the post-activated sperm. Ninety-two metabolites were decreased in the post-activated sperm, including quinic acid, acetylsalicylic acid, 7,8-dihydro L-biopterin, citric acid, glycylphenylalanine, and dihydrotachysterol (DHT). Finally, basing on the pathway analysis, we found that the changed metabolites in sperm motility activation were mainly clustered into energy metabolism and anti-oxidative stress. Fish sperm motility activation would be accompanied by the release of a large amount of energy, which might damage the genetic material of sperm. Thus, the anti-oxidative stress function is a critical process to maintain the normal physiological function of sperm.

分类号:

  • 相关文献
作者其他论文 更多>>