Dynamic simulation water storage of different parts in peach tree under drought stress
文献类型: 外文期刊
第一作者: Gao, Zhaoquan
作者: Gao, Zhaoquan;Li, Zhiqiang;Fan, Jiangchuan
作者机构:
关键词: Peach; Water storage; Water potential; Drought; Transpiration
期刊名称:AGRICULTURAL WATER MANAGEMENT ( 影响因子:4.516; 五年影响因子:5.12 )
ISSN: 0378-3774
年卷期: 2021 年 244 卷
页码:
收录情况: SCI
摘要: The simulation of stored water in various parts of fruit trees under drought stress could be described in detail by the application of mathematical modeling. Under drought stress, tissue water storage provides information on water status, water demand pattern and water regulation capacity by each part of the tree. In the present study, the potted peach (Prunus persica (L.) Batsch) tree was used as the test material, and the water operation model of each part of the tree was constructed based on the resistance-capacitance (RC) model. By analyzing transpiration rate, water potential and stored water during a drying cycle, we found that the water potential in different organs of the potted peach trees were all decreased with the increase in transpiration rate but showing an opposite trend to the transpiration. In the daytime, the stored water flowed out from various tissues, and at night, the water runs into the tissues via root absorption. With the worsening of drought, the regulation capacity of tissue water storage kept decreasing. There was a big difference in the trend of water storage change among different parts. The difference also existed in the amount of tissue stored water entering the transpiration and the amount of water absorption at night among different parts. With an adequate soil water supply, the water storage change of trunk (including the main root) accounted for 42.3% of the total water storage change, followed by 20.6%, 15.4%, 15.3% and 6.7% by the root system, fruits, branches and leaves, respectively. This difference was a result of cooperative actions of both water storage resistance and capacity. Estimated the total of absorbed water of tissue at night were approximately 10% of the daily total transpiration, and it could go above 20% for severely dry soil.
分类号:
- 相关文献
作者其他论文 更多>>
-
Comparative Analyses of Carbon Footprints and Economic Benefits: Rice-Shrimp Co-Cropping, Rice-Crab Co-Cropping and Rice Monoculture Models
作者:Yang, Mei;Shao, Lingyun;Chu, Jin;Li, Zhiqiang;Tian, Chunhui;Sun, Fuyu;Yu, Fengquan
关键词:carbon footprint; NEEB; Rice-Fishery Co-Cropping Model
-
Plant immunity suppression by an β-1,3-glucanase of the maize anthracnose pathogen Colletotrichum graminicola
作者:Gu, Xiaoyu;Cao, Zhiyan;Gu, Xiaoyu;Li, Zhiqiang;Yu, Haiyue;Liu, Wende
关键词:Maize; Glycosyl hydrolase; CgEC124; Callose; Immunity
-
Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives
作者:Li, Zhiqiang;Jallow, Abdoulie;Nidiaye, Seyni;Huang, Yi;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Li, Zhiqiang;Jallow, Abdoulie;Nidiaye, Seyni;Huang, Yi;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Li, Zhiqiang;Jallow, Abdoulie;Nidiaye, Seyni;Huang, Yi;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Li, Zhiqiang;Jallow, Abdoulie;Nidiaye, Seyni;Huang, Yi;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Li, Peiwu;Tang, Xiaoqian;Tang, Xiaoqian
关键词:analyzer; food safety; lateral flow assay; mycotoxins; nanomaterials
-
Genomic and epigenomic insights into the mechanism of cold response in upland cotton (Gossypium hirsutum)
作者:Wang, Junduo;Liang, Yajun;Gong, Zhaolong;Zheng, Juyun;Li, Xueyuan;Li, Zhiqiang;Zhou, Guohui;Xu, Yuhui
关键词:Genome assembly; Epigenetic modification; Transcriptome; Metabolome; Upland cotton; Cold stress
-
Occurrence of leaf spot caused by Colletotrichum plurivorum on cowpea in Fujian Province, China
作者:Dai, Yuli;Gan, Lin;Liu, Xiaofei;Lan, Chengzhong;Yang, Xiujuan;Li, Zhiqiang
关键词:Cowpea anthracnose; Colletotrichum plurivorum; Molecular identification; Pathogenicity; Vigna unguiculata
-
A Verticillium dahliae exoglucanase as potential HIGS target interacts with a cotton cysteine protease to confer resistance to cotton Verticillium wilt
作者:Su, Xiaofeng;Wang, Qi;Guo, Huiming;Cheng, Hongmei;Zhang, Tao;Ge, Xiaoyang;Liu, Wende;Li, Zhiqiang;Wang, Xingfen;Sun, Zhengwen
关键词:Verticillium wilt; Verticillium dahliae; VdEXG; host-induced gene silencing; GhRD21A
-
Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge
作者:Wang, Yuanqiao;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Fan, Jiangchuan;Wen, Weiliang;Lu, Xianju;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Wen, Weiliang;Lu, Xianju;Guo, Xinyu;Fan, Jiangchuan
关键词:instance segmentation; phenotype robot; tomato; greenhouse-based plant phenotyping; ripeness detection