Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology

文献类型: 外文期刊

第一作者: Guo, Anting

作者: Guo, Anting;Huang, Wenjiang;Dong, Yingying;Ye, Huichun;Ma, Huiqin;Ren, Yu;Ruan, Chao;Geng, Yun;Guo, Anting;Huang, Wenjiang;Dong, Yingying;Ren, Yu;Ruan, Chao;Geng, Yun;Huang, Wenjiang;Ye, Huichun;Liu, Bo;Wu, Wenbin

作者机构:

关键词: UAV hyperspectral; wheat yellow rust; disease monitoring; vegetation index; texture; spatial resolution

期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )

ISSN:

年卷期: 2021 年 13 卷 1 期

页码:

收录情况: SCI

摘要: Yellow rust is a worldwide disease that poses a serious threat to the safety of wheat production. Numerous studies on near-surface hyperspectral remote sensing at the leaf scale have achieved good results for disease monitoring. The next step is to monitor the disease at the field scale, which is of great significance for disease control. In our study, an unmanned aerial vehicle (UAV) equipped with a hyperspectral sensor was used to obtain hyperspectral images at the field scale. Vegetation indices (VIs) and texture features (TFs) extracted from the UAV-based hyperspectral images and their combination were used to establish partial least-squares regression (PLSR)-based disease monitoring models in different infection periods. In addition, we resampled the original images with 1.2 cm spatial resolution to images with different spatial resolutions (3 cm, 5 cm, 7 cm, 10 cm, 15 cm, and 20 cm) to evaluate the effect of spatial resolution on disease monitoring accuracy. The findings showed that the VI-based model had the highest monitoring accuracy (R-2 = 0.75) in the mid-infection period. The TF-based model could be used to monitor yellow rust at the field scale and obtained the highest R-2 in the mid- and late-infection periods (0.65 and 0.82, respectively). The VI-TF-based models had the highest accuracy in each infection period and outperformed the VI-based or TF-based models. The spatial resolution had a negligible influence on the VI-based monitoring accuracy, but significantly influenced the TF-based monitoring accuracy. Furthermore, the optimal spatial resolution for monitoring yellow rust using the VI-TF-based model in each infection period was 10 cm. The findings provide a reference for accurate disease monitoring using UAV hyperspectral images.

分类号:

  • 相关文献
作者其他论文 更多>>