Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity
文献类型: 外文期刊
第一作者: Zhai, Lichao
作者: Zhai, Lichao;Zhang, Lihua;Jia, Xiuling;Zhang, Zhengbin;Wang, Zhanbiao;Song, Shijia
作者机构:
关键词: Tillage practices; Summer maize; Grain filling; Inferior kernel; Soil water content, photosynthetic capacity
期刊名称:AGRICULTURAL WATER MANAGEMENT ( 影响因子:4.516; 五年影响因子:5.12 )
ISSN: 0378-3774
年卷期: 2021 年 245 卷
页码:
收录情况: SCI
摘要: Poor grain filling of inferior kernel of summer maize is a major challenge restricting grain yield of summer maize, especially under higher plant densities. Much work so far has proved that tillage practices could regulate soil properties and grain yield of maize effectively. In order to explore the effect of tillage practice on grain filling of inferior kernel of summer maize, field experiments were conducted over two consecutive years (2016-2017), and three tillage practices (T1, no tillage; T2, no tillage with subsoiling; T3, deep horizontal rotary tillage) were assessed. The grain filling parameter showed that final grain weight (A), the time reaching the maximum grain filling rate (T-max), the dry matter accumulation under the maximum grain filling rate (W-max), the mean grain filling rate (G(mean)), and the active grain filling period (D) of T2 were usually higher than that of T1 and T3, and significant difference was observed between T2 and T1. Compared with T1, T2 and T3 reduced the soil bulk density and increased the soil porosity, and significantly increased the root dry matter accumulation in the 0-40 cm soil profile by 13.4% and 28.7%, respectively. Soil water content decreased among tillage practices in the order T2 > T1 > T3. However, T2 and T3 increased the water consumption, compared to that of T1. Moreover, T2 and T3 increased post-anthesis photosynthetic capacity, including the photosynthetic rate, leaf area duration, and chlorophyll content, and further improved the post-antheisis and total dry matter accumulation. The enzyme activities of SuSase, StSase, and ADPG-PPase of inferior and superior kernel in T2 and T3 were also higher than that of T1. In conclusion, the present results indicate that subsoiling could promote the grain filling of inferior kernel of summer maize by regulating soil water content, soil water consumption, and photosynthetic capacity.
分类号:
- 相关文献
作者其他论文 更多>>
-
Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana
作者:Zhang, Lihua;Xing, Liwei;Dai, Jing;Li, Zhenghao;Zhang, Aoning;Li, Xingguo;Han, Deguo;Wang, Tianhe;Liu, Wanda
关键词:grape rootstock; resistance gene; salinity and chilly stress; genetic transformation; transcriptional regulation
-
Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review
作者:Cai, Chenggu;Wang, Zhanbiao;Ma, Lei;Li, Fuguang;Cai, Chenggu;Wang, Zhanbiao;Ma, Lei;Li, Fuguang;Xu, Zhaoxian;Yu, Jianming
关键词:Cotton stalk valorization; Bio-based materials; Bio-based chemicals; Biofuels; Techno-economic assessment; Sustainable development of cotton industry
-
Soil water movement may regulate soil water consumption and improve cotton yields under different cotton cropping systems
作者:Wu, Fengqi;Guo, Simeng;Huang, Weibin;Wang, Zhanbiao;Feng, Lu;Li, Yabing;Han, Yingchun;Wang, Zhanbiao;Feng, Lu;Wang, Guoping;Li, Xiaofei;Lei, Yaping;Zhi, Xiaoyu;Xiong, Shiwu;Jiao, Yahui;Xin, Minghua;Yang, Beifang;Li, Yabing;Wu, Fengqi;Wu, Fengqi;Guo, Simeng;Li, Yabing;Huang, Weibin;Wang, Zhanbiao
关键词:Cotton; Yield; Soil water movement; Soil water consumption; Planting system
-
Whole genome resequencing reveals the adaptability of native chickens to drought, tropical and frigid environments in Xinjiang
作者:Li, Haiying;Zhao, Xiaoyu;Wu, Yingping;Li, Jiahui;Yao, Yingying;Yao, Yang;Wang, Lin;Zhang, Lihua
关键词:chicken; genetic variant; candidate gene; whole genome sequencing
-
Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation
作者:Zhai, Lichao;Zhang, Lihua;Cui, Yongzeng;Zheng, Mengjing;Yao, Yanrong;Zhang, Jingting;Jia, Xiuling;Zhai, Lifang;Hou, Wanbin;Wu, Liyong
关键词:chemical fertilizer; dry mater accumulation; kernel position effect; N uptake; organic fertilizer
-
A 76-base pair duplication within the enhancer region of the HMX1 gene causes sheep microtia
作者:Zhang, Lihua;Li, Haiying;Zhang, Lihua;Liang, Long;Kasimu, Hailati;Li, Wenrong;Liu, Mingjun;He, Sangang
关键词:Ovine; Genome-Wide Association; Gene Edit; Enhancer; Microtia
-
Overexpression of a Fragaria vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene (FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana
作者:Li, Wenhui;Li, Huiwen;Wei, Yangfan;Han, Jiaxin;Li, Xingguo;Zhang, Lihua;Han, Deguo;Wang, Yu
关键词:Fragaria vesca; FvNAC29; high-salinity stress; low-temperature stress