Seasonal differences in the transcriptome profile of the Zhedong white goose (Anser cygnoides) pituitary gland
文献类型: 外文期刊
第一作者: Zhao, Wanqiu
作者: Zhao, Wanqiu;Yuan, Taoyan;Fu, Yan;Zhao, Wanqiu;Yuan, Taoyan;Chen, Li;Lu, Lizhi;Niu, Yan Dong;Chen, Weihu
作者机构:
关键词: Zhedong white goose; seasonal reproduction; pituitary gland; RNA-Seq analysis
期刊名称:POULTRY SCIENCE ( 影响因子:3.352; 五年影响因子:3.679 )
ISSN:
年卷期: 2021 年 100 卷 2 期
页码:
收录情况: SCI
摘要: In animals, the adaptation to breed at the time of greatest survival of the young is known as seasonal reproduction. This is mainly controlled by the photoperiod, which stimulates the hypothalamic pituitary-gonadal axis and starts the breeding season. Herein, we have determined the seasonal changes in gene expression patterns of Zhedong white geese pituitary glands under a natural photoperiodism, conducted at autumn equinox (AE), winter solstice (WS), spring equinox (SE), and summer solstice (SS). Pair wise comparisons of WS vs. AE, SE vs. WS, SS vs. SE, and AE vs. SS resulted in 1,139, 33, 704, and 3,503 differently expressed genes, respectively. When compared with SS, AE showed downregulation of genes, such as vasoactive intestinal peptide receptor, prolactin receptor, and thyroid hormone receptor beta, whereas gonadotropin-releasing hormone II receptor was upregulated, indicating that these genes may be responsible for the transition from cessation to egg laying. In addition, the expression levels of 5 transcription factors (POU1F1, Pitx2, NR5A1, NR4A2, and SREBF2) and 6 circadian clock-associated genes (Clock, Per2, ARNTL2, Eya3, Dio2, and NPAS2) also changed seasonally. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that "response to oxidative stress" and steroid biosynthesis pathway also participate in regulating the reproduction seasonality of geese. Overall, these results contribute to the identification of genes involved in seasonal reproduction, enabling a better understanding of the molecular mechanism underlying seasonal reproduction of geese.
分类号:
- 相关文献
作者其他论文 更多>>
-
Dimerization among multiple NAC proteins mediates secondary cell wall cellulose biosynthesis in cotton fibers
作者:Chen, Feng;Qiao, Mengfei;Chen, Li;Liu, Min;Luo, Jingwen;Gao, Yanan;Li, Mengyun;Cai, Jinglong;Huang, Gengqing;Xu, Wenliang;Persson, Staffan;Persson, Staffan;Xu, Wenliang
关键词:cotton fiber; secondary cell wall; cellulose; transcriptional regulation; NAC domain proteins; dimerization; protein complex
-
Novel spectral indices and transfer learning model in estimat moisture status across winter wheat and summer maize
作者:Li, Zongpeng;Cheng, Qian;Zhai, Weiguang;Mao, Bohan;Li, Yafeng;Ding, Fun;Zhou, Xinguo;Chen, Zhen;Chen, Li;Zhang, Bo
关键词:Fuel Moisture Content; algorithms; BRNN; transfer model
-
Apoptosis and its role in postmortem meat tenderness: A comprehensive review
作者:Liu, Chongxin;Zhang, Dequan;Chen, Li;Huang, Caiyan;Blecker, Christophe;Huang, Caiyan;Zhao, Yingxin;Roy, Bimol C.;Bruce, Heather L.;Xiang, Can;Zhang, Yanyan
关键词:Meat tenderness; Myofibrillar proteins; Mitochondrial apoptosis pathway; Postmortem muscle
-
Advancements in understanding and improving duck egg odor: Mechanisms, influential factors, and innovative strategies
作者:Dong, Qishan;Sun, Yangying;Pan, Daodong;He, Jun;Dong, Qishan;Lu, Lizhi;Tian, Yong;Zeng, Tao
关键词:Duck egg; Odor formation; Trimethylamine; Gut microbiota; Reducing odor; Coating preservation
-
Analysis of bioactive substances in mutton and their effects on the quality of minced mutton
作者:Cheng, Chengpeng;Xie, Xinru;Li, Shaobo;Chen, Pengyu;Huang, Caiyan;Zheng, Xiaochun;Chen, Li;Zhang, Dequan
关键词:Mutton; Bioactive substances; Flavonoids; Calcium ions; Minced mutton quality
-
Absorption and transport mechanism of colloidal nanoparticles (CNPs) in lamb soup based on Caco-2 cell
作者:Fu, Jianing;Liu, Ling;Fu, Jianing;Li, Shaobo;Xu, Meizhen;Chen, Li;Zhang, Dequan
关键词:Colloidal nanoparticles; Caco-2 cell; Lamb soup; Absorption mechanism; Transport
-
Capsid protein of turnip crinkle virus suppresses antiviral RNA decay by degrading Arabidopsis Dcp1 via the ubiquitination pathway (vol 121, e70075, 2025)
作者:Wu, Kunxin;Xie, Qiuxian;Liu, Xueting;Fu, Yan;Li, Shuxia;Yu, Xiaoling;Li, Wenbin;Zhao, Pingjuan;Ren, Yanli;Ruan, Mengbin;Zhang, Xiuchun;Wu, Kunxin;Xie, Qiuxian;Liu, Xueting;Fu, Yan;Li, Shuxia;Yu, Xiaoling;Li, Wenbin;Zhao, Pingjuan;Ren, Yanli;Ruan, Mengbin;Zhang, Xiuchun;Xie, Qiuxian;Liu, Xueting;Fu, Yan;Ren, Yanli;Li, Shuxia;Yu, Xiaoling;Li, Wenbin;Zhao, Pingjuan;Ruan, Mengbin;Zhang, Xiuchun
关键词: