The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response
文献类型: 外文期刊
第一作者: Wang, Lili
作者: Wang, Lili;Zhan, Li;Zhao, Yan;Huang, Yongchi;Wu, Chong;Pan, Ting;Qin, Qi;Xu, Yiren;Li, Jing;Hu, Honghong;Xue, Shaowu;Yan, Shunping;Deng, Zhiping
作者机构:
期刊名称:NUCLEIC ACIDS RESEARCH ( 影响因子:16.971; 五年影响因子:15.542 )
ISSN: 0305-1048
年卷期: 2021 年 49 卷 3 期
页码:
收录情况: SCI
摘要: DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and weel to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in weel but restored in weel pil1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in weel prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.
分类号:
- 相关文献
作者其他论文 更多>>
-
Insights into the Enantiomeric Uptake, Translocation, and Distribution of Triazole Chiral Pesticide Mefentrifluconazole in Wheat (Triticum aestivum L.)
作者:Liu, Lu;Cheng, Zhipeng;Lu, Yuan;Sun, Hongwen;Chen, Zenglong;Li, Jing;Li, Jing
关键词:mefentrifluconazole; enantiomers; plant uptake; translocation; distribution; molecular docking
-
Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro effect
作者:Yu, Panling;Ma, Jianshuai;Xu, Baoting;Yu, Panling;Pan, Xueyu;Chen, Mingjie;Ma, Jianshuai;Xu, Baoting;Zhao, Yan
关键词:Hericium erinaceus soluble dietary fiber; Extraction process optimization; Monosaccharide composition; In vitro lipid lowering
-
Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments
作者:Bai, Xue;Wang, Tao;Li, Diyan;Bai, Xue;Li, Mingzhou;Zhong, Hang;Sun, Jing;Cui, Xiang;Gu, Yiren;Miao, Xiaomeng;Li, Jing;Lu, Lizhi;Xu, Wenwu;Sun, Jing
关键词:Metagenome; ARGs; Animal gut; Soil; Indicators
-
Transcriptomic and Metabolomic Analyses Provide New Insights into the Response of Strawberry (Fragaria x ananassa Duch.) to Drought Stress
作者:Jiang, Lili;Wang, Xiaofang;Wu, Chong;Jiang, Lili;Wang, Xiaofang;Wu, Chong;Song, Ruimin;Wang, Jie
关键词:strawberry; drought stress; transcriptomics; metabolomics
-
Natural variation of domestication-related genes contributed to latitudinal expansion and adaptation in soybean
作者:Li, Jing;Li, Yecheng;Liu, Yitian;Feng, Yue;Qi, Jie;Li, Bin;Zhang, Shengrui;Sun, Junming;Agyenim-Boateng, Kwadwo Gyapong;Shaibu, Abdulwahab Saliu
关键词:Soybean; Latitudinal expansion; Domestication; Adaptation; Flowering time
-
Continuous crop rotation increases soil organic carbon stocks in riverdeltaş: A 40-year field evidence
作者:Liu, Deyao;Gong, Huarui;Li, Jing;Wang, Lingqing;Ouyang, Zhu;Gong, Huarui;Liu, Zhen;Ouyang, Zhu;Xu, Li;Wang, Tieyu;Liu, Deyao
关键词:Cotton; Driving factors; River deltas; Soil organic carbon stock; Wheat-maize
-
Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development
作者:Song, Haiyan;Zhao, Ke;Jiang, Guoliang;Sun, Shuxia;Li, Jing;Tu, Meiyan;Wang, Lingli;Xie, Hongjiang;Chen, Dong;Song, Haiyan;Zhao, Ke;Jiang, Guoliang;Sun, Shuxia;Li, Jing;Tu, Meiyan;Wang, Lingli;Xie, Hongjiang;Chen, Dong;Song, Haiyan
关键词:SBP-Box gene family; loquat; carotenoid biosynthesis; fruit ripening