APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis
文献类型: 外文期刊
第一作者: Zhou, Dan
作者: Zhou, Dan;Cui, Yuchao;Zheng, Xijun;Li, Yan;Wu, Minliang;Chen, Liang;Shen, Weifeng;Liu, Yuqin;Fang, Shanru;Liu, Chunhong;Zhao, Mingfu;Tang, Ming;Yi, Yin;Tang, Ming;Yi, Yin
作者机构:
关键词: apical panicle abortion; anther; Oryza sativa; reactive oxygen species; salicylic acid
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )
ISSN: 1664-462X
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Panicle degradation causes severe yield reduction in rice. There are two main types of panicle degradation: apical spikelet abortion and basal degeneration. In this study, we isolated and characterized the apical panicle abortion mutant apical spikelet abortion (asa), which exhibits degeneration and defects in the apical spikelets. This mutant had a pleiotropic phenotype, characterized by reduced plant height, increased tiller number, and decreased pollen fertility. Map-based cloning revealed that OsASA encodes a boric acid channel protein that showed the highest expression in the inflorescence, peduncle, and anther. RNA-seq analysis of the asa mutant vs wild-type (WT) plants revealed that biological processes related to reactive oxygen species (ROS) homeostasis and salicylic acid (SA) metabolism were significantly affected. Furthermore, the asa mutants had an increased SA level and H2O2 accumulation in the young panicles compared to the WT plants. Moreover, the SA level and the expression of OsPAL3, OsPAL4, and OsPAL6 genes (related to SA biosynthesis) were significantly increased under boron-deficient conditions in the asa mutant and in OsASA-knockout plants. Collectively, these results suggest that the boron distribution maintained by OsASA is required for normal panicle development in a process that involves modulating ROS homeostasis and SA biosynthesis.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integration of transcriptome, histopathology, and physiological indicators reveals regulatory mechanisms of largemouth bass ( Micropterus salmoides) in response to carbonate alkalinity stress
作者:Hua, Jixiang;Xi, Bingwen;Qiang, Jun;Hua, Jixiang;Tao, Yifan;Lu, Siqi;Li, Yan;Dong, Yalun;Jiang, Bingjie;Xi, Bingwen;Qiang, Jun
关键词:Micropterus salmoides; Carbonate alkalinity stress; Tissue damage; Serum biological chemistry; RNA-seq
-
Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton
作者:Zeng, Qing;Wang, Junjuan;Wang, Shuai;Lu, Xuke;Li, Yan;Ye, Wuwei;Yin, Zujun;Peng, Fanjia;Bakhsh, Allah;Qaraevna, Bobokhonova Zebinisso;Ye, Wuwei;Yin, Zujun
关键词:
-
Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land
作者:Ma, Changjian;Wang, Yue;Liu, Lining;Wang, Xuejun;Sun, Zeqiang;Li, Yan;Ma, Changjian;Wang, Yue;Wu, Wenbiao;Hou, Peng;Li, Bowen;Yuan, Huabin
关键词:Grain yield; Biomass yield; Fertilizer physiological efficiency; Coastal saline-alkali land
-
Comparative genomic analysis reveals the difference of NLR immune receptors between anthracnose-resistant and susceptible sorghum cultivars
作者:Zhang, Ji-Wei;Li, Jin-Yang;Yu, Zhi-Fan;Chang, Xin-Ya;Han, Jun-Ru;Xia, Jing-Yang;Kami, Yam Bahadur;Wang, He;Li, Yan;Wang, Wen-Ming;Sun, Yuan-Tao;Ni, Xian-Lin;Li, Ling;Wang, Song-Tao
关键词:Sorghum; Anthracnose; NLR receptor; Colletotrichum sublineola; Genetic variation; Differential gene expression
-
The role of the nitrate transporter NRT1.1 in plant iron homeostasis and toxicity on ammonium
作者:Li, Guangjie;Zhang, Lin;Wang, Yanqin;Li, Yan;Wang, Zhaoyue;Shi, Weiming;Kronzucker, Herbert J.;Kronzucker, Herbert J.;Chen, Gui
关键词:Ammonium toxicity; Iron; Nitrate; NRT1.1; Root growth
-
Context-dependent response of crop pests to landscape composition
作者:Yang, Long;Pan, Yunfei;Wyckhuys, Kris A. G.;Li, Minlong;Wang, Kaitao;Liu, Bing;Liu, Yangtian;Jia, Shuangshuang;Li, Qian;Li, Yan;Lu, Yanhui;Wyckhuys, Kris A. G.;Desneux, Nicolas
关键词:Agroecology; context dependency; ecological based pest management; ecological intensification; host quality
-
TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis
作者:Dong, Feiyan;Liu, Yide;Zhang, Huadong;Li, Yaqian;Chen, Sheng;Wang, Shuailei;Zhu, Zhanwang;Liu, Yike;Song, Jinghan;Li, Yan
关键词:Wheat;
TaSnRK3.23B ; Ectopic expression; Drought stress; CBL proteins