Clomazone improves the interactions between soil microbes and affects C and N cycling functions
文献类型: 外文期刊
第一作者: Rong, Lili
作者: Rong, Lili;Wu, Xiaohu;Xu, Jun;Dong, Fengshou;Liu, Xingang;Xu, Hanqing;Cao, Junli;Zheng, Yongquan;Rong, Lili
作者机构:
关键词: Clomazone; Community structure; Network; Acidobacteria; Functional groups
期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )
ISSN: 0048-9697
年卷期: 2021 年 770 卷
页码:
收录情况: SCI
摘要: Clomazone, a widely used herbicide, is mainly used in soybean fields. We previously found that clomazone alters Proteobacteria and Nitrospirae abundances and also alters urease activity, which result in changes in NH4+ and NO3- contents in soil nitrogen cycling. It remains unknown, however, how the co-occurrence patterns of species and functions of soil ecosystems change in response to clomazone applications in soil. We designed a 3-month greenhouse experiment to investigate soil microorganism dynamics in response to clomazone. Clomazone was applied at three doses (e.g., T1, T10, T100), which significantly increased bacterial abundance at days 15 and 60. Fungal abundance was stimulated at day 30 in T10-treated soils, whereas fungal abundances decreased in T100-treated soils at day 15. Clomazone altered bacterial and fungal community structures. Network analyses showed more complex and highly connected microbial communities in clomazone-treated soils. Moreover, an Acidobacteria-dominated cluster was identified within each network of clomazone-treated soils. Clomazone applied at the recommended rate decreased the functional groups that were associated with denitrification and hydrogen oxidation at days 15 and 60, and enhanced photoheterotrophy from days 30 to 60. High clomazone inputs increased trophic types (e.g., chemoheterotrophy, phototrophy, photoautotrophy and cyanobacteria) and C cycling functional groups (e.g., fermentation and cellulolysis). The half-life of clomazone ranged from 40.1 to 93.5 days in three cases. Our results provide important information for use of this herbicide. (C) 2021 Elsevier B.V. All rights reserved.
分类号:
- 相关文献
作者其他论文 更多>>
-
Interpretation of the effects of rumen acidosis on the gut microbiota and serum metabolites in calves based on 16S rDNA sequencing and non-target metabolomics
作者:Wu, Fanlin;Wu, Xiaohu;Ji, Peng;Yang, Haochi;Zhu, Xiaopeng
关键词:calves; rumen acidosis; gut microbiota; serum metabolites; correlation analysis
-
Optimizing Analysis Methods: Rapid and Accurate Determination of Cuaminosulfate Residues with LC-MS/MS Based on Box-Behnken Design Study
作者:Wang, Yuzhu;Zhang, Lan;Mao, Liangang;Zhu, Lizhen;Zheng, Yongquan;Liu, Xingang;Wu, Chi;He, Mingyuan;Wang, Yuzhu
关键词:cuaminosulfate; dissipation; terminal residues; watermelon; soil; LC-MS/MS
-
Residue changes, degradation, processing factors and their relation between physicochemical properties of pesticides in peanuts during multiproduct processing
作者:Cui, Kai;Wang, Jian;Guan, Shuai;Liang, Jingyun;Fang, Liping;Ding, Ruiyan;Li, Teng;Dong, Zhan;Ma, Guoping;Wu, Xiaohu;Zheng, Yongquan
关键词:Degradation; Health; Peanut; Pesticide; Treatment
-
Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions
作者:Chang, Jinhe;Gao, Kang;Li, Runan;Dong, Fengshou;Li, Yuanbo;Li, Runan;Li, Yuanbo;Chang, Jinhe;Zheng, Yongquan;Zhang, Qingming
关键词:Phenamacril; Accumulation; Translocation; Metabolism; Plant species differences; Cultivation conditions
-
From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks
作者:Xia, Beiqi;Wang, Sijia;Li, Runan;Dong, Fengshou;Li, Yuanbo;Zheng, Yongquan
关键词:plant guttation; pesticides; neonicotinoids; plant uptake; translocation; ecological risks
-
Uptake and Biotransformation of Guvermectin in Three Crops after In Vivo and In Vitro Exposure
作者:Shi, Yuan;Xiang, Wensheng;Wang, Xiangjing;Shi, Yuan;Pan, Xinglu;Wu, Xiaohu;Xu, Jun;Xiang, Wensheng;Zheng, Yongquan;Dong, Fengshou
关键词:biopesticide; guvermectin; uptake; biotransformation; toxicity
-
Stereoselective Bioactivity and Action Mechanism of the Fungicide Isopyrazam
作者:Guo, Peilin;Ren, Yuqi;Pan, Xinglu;Xu, Jun;Wu, Xiaohu;Dong, Fengshou;Guo, Peilin;Du, Fengpei;Zheng, Yongquan;Zheng, Yongquan
关键词:isopyrazam; stereoselectivity; bioactivity; mechanism; phytopathogens