Monitoring the behavior of imazalil and its metabolite in grapes, apples, and the processing of fruit wine at enantiomeric level
文献类型: 外文期刊
第一作者: Li, Runan
作者: Li, Runan;Pan, Xinglu;An, Xiaokang;Wang, Kuan;Dong, Fengshou;Xu, Jun;Liu, Xingang;Wu, Xiaohu;Zheng, Yongquan
作者机构:
关键词: imazalil; metabolite; enantioselectivity; processing factor; wine
期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:2.614; 五年影响因子:2.945 )
ISSN: 0022-5142
年卷期:
页码:
收录情况: SCI
摘要: BACKGROUND Imazalil is widely used in agriculture, which may pose a threat to food safety. This study aimed to investigate the fate of imazalil and its main metabolite, R14821 (imazalil-M), in field grapes and apples, and in the processing of fruit wine at the enantiomeric level. RESULTS Analysis method was established to determine imazalil and imazalil-M enantiomers in grape, apple, fruit wine and pomace. The method showed acceptable recoveries of 71.6-99.9% and precision with relative standard deviation of 0.3-11.7%. Processing factors (PFs) were 0.15-0.40 (for imazalil enantiomers) and <0.13-0.83 (for imazalil-M enantiomers) during the wine-making process. The PFs after individual steps including washing, peeling, fermentation, and clarification were all less than 1. No enantioselective dissipation of imazalil was found in grapes under field conditions with half-lives of 23.82-24.49 days. R-(-)-imazalil degraded slightly faster than S-(+)-imazalil in apples under field conditions with half-lives of 9.82-10.09 days. S-(+)-imazalil-M preferentially degraded in field grapes and apple. No significant enantioselectivity of imazalil and imazalil-M was observed during the wine-making process. The enantiomeric fraction (EF) values of imazalil were 0.484-0.511 and 0.509-0.522 in grape wine and cider, respectively. The EFs were 0.484-0.501(in grape wine) and 0.484-0.504 (in cider) for imazalil-M. CONCLUSION The results showed that the wine-making process could reduce imazalil and imazalil-M residues in grapes and apples. The finding of non-enantioselectivity of imazalil during the processing of fruit wine was useful for accurate risk assessment for imazalil in raw and processing fruits. (c) 2021 Society of Chemical Industry.
分类号:
- 相关文献
作者其他论文 更多>>
-
Interpretation of the effects of rumen acidosis on the gut microbiota and serum metabolites in calves based on 16S rDNA sequencing and non-target metabolomics
作者:Wu, Fanlin;Wu, Xiaohu;Ji, Peng;Yang, Haochi;Zhu, Xiaopeng
关键词:calves; rumen acidosis; gut microbiota; serum metabolites; correlation analysis
-
Optimizing Analysis Methods: Rapid and Accurate Determination of Cuaminosulfate Residues with LC-MS/MS Based on Box-Behnken Design Study
作者:Wang, Yuzhu;Zhang, Lan;Mao, Liangang;Zhu, Lizhen;Zheng, Yongquan;Liu, Xingang;Wu, Chi;He, Mingyuan;Wang, Yuzhu
关键词:cuaminosulfate; dissipation; terminal residues; watermelon; soil; LC-MS/MS
-
Residue changes, degradation, processing factors and their relation between physicochemical properties of pesticides in peanuts during multiproduct processing
作者:Cui, Kai;Wang, Jian;Guan, Shuai;Liang, Jingyun;Fang, Liping;Ding, Ruiyan;Li, Teng;Dong, Zhan;Ma, Guoping;Wu, Xiaohu;Zheng, Yongquan
关键词:Degradation; Health; Peanut; Pesticide; Treatment
-
Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions
作者:Chang, Jinhe;Gao, Kang;Li, Runan;Dong, Fengshou;Li, Yuanbo;Li, Runan;Li, Yuanbo;Chang, Jinhe;Zheng, Yongquan;Zhang, Qingming
关键词:Phenamacril; Accumulation; Translocation; Metabolism; Plant species differences; Cultivation conditions
-
From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks
作者:Xia, Beiqi;Wang, Sijia;Li, Runan;Dong, Fengshou;Li, Yuanbo;Zheng, Yongquan
关键词:plant guttation; pesticides; neonicotinoids; plant uptake; translocation; ecological risks
-
Uptake and Biotransformation of Guvermectin in Three Crops after In Vivo and In Vitro Exposure
作者:Shi, Yuan;Xiang, Wensheng;Wang, Xiangjing;Shi, Yuan;Pan, Xinglu;Wu, Xiaohu;Xu, Jun;Xiang, Wensheng;Zheng, Yongquan;Dong, Fengshou
关键词:biopesticide; guvermectin; uptake; biotransformation; toxicity
-
Stereoselective Bioactivity and Action Mechanism of the Fungicide Isopyrazam
作者:Guo, Peilin;Ren, Yuqi;Pan, Xinglu;Xu, Jun;Wu, Xiaohu;Dong, Fengshou;Guo, Peilin;Du, Fengpei;Zheng, Yongquan;Zheng, Yongquan
关键词:isopyrazam; stereoselectivity; bioactivity; mechanism; phytopathogens