Transcriptome analysis revealed that multiple genes were related to the cyflumetofen resistance of Tetranychus cinnabarinus (Boisduval)

文献类型: 外文期刊

第一作者: Liu, Jialu

作者: Liu, Jialu;Jiang, Zhixin;Feng, Kaiyang;Wen, Xiang;Sun, Jingyu;Li, Jinhang;Liu, Jie;He, Lin;Liu, Jialu;Jiang, Zhixin;Feng, Kaiyang;Wen, Xiang;Sun, Jingyu;Li, Jinhang;Liu, Jie;He, Lin;Liu, Jialu;Jiang, Zhixin;Feng, Kaiyang;Wen, Xiang;Sun, Jingyu;Li, Jinhang;Liu, Jie;He, Lin;Lu, Wencai

作者机构:

关键词: Metabolic resistance; Tetranychus cinnabarinus; Cyflumetofen; Multigene mediated resistance

期刊名称:PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY ( 影响因子:4.2; 五年影响因子:4.6 )

ISSN: 0048-3575

年卷期: 2021 年 173 卷

页码:

收录情况: SCI

摘要: Metabolic resistance is one of the main causes of acaricide resistance. Many previous studies focused on the function of specific genes in insecticides/acaricides resistance. However, during the development of resistance, the overall dynamic of expression levels of detoxification enzyme genes in mites is still unclear. Tetranychus cinnabarinus, a major agricultural pest, which is notorious for developing resistance to acaricides rapidly. In this study, a field susceptible strain (YS) was continuously selected for 16, 25 and 32 generations, and developed to low resistance (7.83-fold, L), medium resistance (17.23-fold, M) and high resistance (86.05-fold, H), respectively. Transcriptome sequencing was performed in YS, L, M and H strains. Overall, compared with YS strain, the number of differential expression genes increased slightly with the development of cyflumetofen-resistance. As for detoxification genes, the median of fold change of up-regulated P450, CCE and GST genes was higher than those of all up-regulated genes in three resistance level, but only the number and the median of fold change of up-regulated P450 genes was increased slightly with the development of resistance. In addition, synergism experiments also proved that P450 and GST genes were the major contributors to the metabolic resistance of cyflumetofen of T. cinnabarinus. These results showed that the resistance of T. cinnabarinus to cyflumetofen was related to many resistant genes, among which P450 genes could play crucial roles in cyflumefen resistance.

分类号:

  • 相关文献
作者其他论文 更多>>