Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues

文献类型: 外文期刊

第一作者: Ma, Zheng

作者: Ma, Zheng;Li, Jing;Xiang, Hai;Kang, Huimin;Li, Hua;Zhao, Guiping;Ma, Zheng;Li, Jing;Xiang, Hai;Kang, Huimin;Li, Hua;Zhao, Guiping;Luo, Na;Liu, Lu;Cui, Huanxian;Zhao, Guiping;Luo, Na;Liu, Lu;Cui, Huanxian;Zhao, Guiping

作者机构:

关键词: Dedifferentiated preadipocytes; Different tissue derivation; Lipid deposition; DEGs; Chicken

期刊名称:BMC GENOMICS ( 影响因子:3.594; 五年影响因子:4.093 )

ISSN: 1471-2164

年卷期: 2021 年 22 卷 1 期

页码:

收录情况: SCI

摘要: Background A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. Results Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. Conclusions Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.

分类号:

  • 相关文献
作者其他论文 更多>>