Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover

文献类型: 外文期刊

第一作者: Wang, Li

作者: Wang, Li;Cui, Li;Wang, Qinqin;Huang, Weiling;Ji, Xuejiao;Yang, Qingjie;Rui, Changhui;Zhu, Junshu

作者机构:

关键词: sulfoxaflor; ABC transporter; Aphis gossypii; insecticide resistance

期刊名称:PEST MANAGEMENT SCIENCE ( 影响因子:3.75; 五年影响因子:3.861 )

ISSN: 1526-498X

年卷期:

页码:

收录情况: SCI

摘要: BACKGROUND Sulfoxaflor is a new insecticide for controlling against Aphis gossypii in the field. ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins and play an important role in the detoxification process. However, the potential role of ABC transporters in sulfoxaflor resistance in A. gossypii is unknown. RESULTS In this study, an ABC transporter inhibitor, verapamil, dramatically increased the toxicity of sulfoxaflor in the resistant population with a synergistic ratio of 8.55. However, verapamil did not synergize sulfoxaflor toxicity in the susceptible population. The contents of ABC transporters were significantly increased in the Sul-R population. Based on RT-qPCR analysis, 10 of 23 ABC transcripts, ABCA1, ABCA2, ABCB1, ABCB5, ABCD1, ABCG7, ABCG16, ABCG26, ABCG27, and MRP7, were up-regulated in the Sul-R population compared to the Sus population. Meanwhile, inductive effects of ABCA1, ABCD1, ABCG7 and ABCG26 by sulfoxaflor were found in A. gossypii. Furthermore, knockdown of ABCA1 and ABCD1 using RNAi significantly increased the sulfoxaflor sensitivity in Sul-R aphids. CONCLUSION These results suggested that ABC transporters, especially the ABCA1 and ABCD1 genes, might be related with sulfoxaflor resistance in A. gossypii. This study will promote further work to validate the functional roles of these ABCs in sulfoxaflor resistance and might be helpful for the management of sulfoxaflor-resistant A. gossypii.

分类号:

  • 相关文献
作者其他论文 更多>>