Analysis of Damage Characteristics and Fragmentation Simulation of Soybean Seeds Based on the Finite-Element Method

文献类型: 外文期刊

第一作者: Chen, Yuxuan

作者: Chen, Yuxuan;Tang, Zhong;Zhou, Weiwei;Jing, Jianpeng;He, Xiaoying;Tang, Zhong;Li, Bin;Wang, Shiguo;Liu, Yang

作者机构:

关键词: soybean kernel; damage stage analysis; ANSYS; crushing parameter measurement; finite-element simulation

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 7 期

页码:

收录情况: SCI

摘要: Soybeans are a crucial crop, and it is therefore necessary to make accurate predictions of their mechanical properties during harvesting to optimize the design of threshing cylinders, minimize the breakage rate during threshing, and enhance the quality of the final product. However, a precise model for the mechanical response of soybean seeds under stress conditions is currently lacking. To establish an accurate finite-element model (FEM) for soybeans that can predict their mechanical behavior under various loading conditions, an ellipsoidal modeling approach tailored for soybeans is proposed. Soybeans harvested in Xinjiang were collected and processed as experimental materials; the average moisture content was 11.77%, there was an average density of 1.229 g/cm(3), and the average geometric specifications (height, thickness, and width) were 8.50 mm, 7.92 mm, and 7.10 mm, respectively. Compression tests were conducted on the soybeans in vertical, horizontal, and lateral orientations at the same loading speed to analyze the load and damage stages of these soybeans harvested in Xinjiang. The experimental results indicate that as the contact area decreases, the crushing load increases, with soybeans in the horizontal orientation being able to withstand the highest ultimate pressure. When placed vertically, the soybeans are not crushed; in horizontal and lateral orientations, however, they exhibit varying degrees of breakage. The Hertz formula was simplified based on the geometric characteristics of soybeans, and the elastic moduli in the X, Y, and Z directions of the soybean seeds were calculated as 42.8821 MPa, 40.4342 MPa, and 48.7659 MPa, respectively, using this simplified Hertz formula. A model of the soybeans was created in SolidWorks Ver.2019 and imported into ANSYS WORKBENCH for simulation verification. The simulation results were consistent with the experimental findings. The research findings enhance the understanding of the mechanical behavior of soybean seeds and provide robust scientific support for the optimization of soybean processing technologies and the improvement of storage and transportation efficiency.

分类号:

  • 相关文献
作者其他论文 更多>>