Genetic resilience in chickens against bacterial, viral and protozoal pathogens

文献类型: 外文期刊

第一作者: Gul, Haji

作者: Gul, Haji;Khan, Ibrar Muhammad;Wang, Hongcheng;Liu, Yong;Gul, Haji;Habib, Gul;Rahman, Sajid Ur;Rahman, Sajid Ur;Khan, Nazir Muhammad;Khan, Najeeb Ullah

作者机构:

关键词: chicken MHC; genetics; SNPs; non-coding RNAs; pathogens; infectious diseases; novel technology

期刊名称:FRONTIERS IN VETERINARY SCIENCE ( 影响因子:3.471; 五年影响因子:3.821 )

ISSN:

年卷期: 2022 年 9 卷

页码:

收录情况: SCI

摘要: The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.

分类号:

  • 相关文献
作者其他论文 更多>>