Comparative analysis of lipid components in fresh Crassostrea Hongkongensis (raw) and its dried products by using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS)

文献类型: 外文期刊

第一作者: Sun, Qunzhao

作者: Sun, Qunzhao;Cai, Qiuxing;Pang, Tingcai;Lan, Weibing;Sun, Qunzhao;Wang, Yunru;Cai, Qiuxing;Li, Laihao

作者机构:

关键词: Crassostrea hongkongensis; high performance liquid chromatography; quadrupole time-of-flight mass spectrometer; lipidomics; phosphoglyceride; multivariate statistical analysis

期刊名称:FRONTIERS IN NUTRITION ( 影响因子:5.0; 五年影响因子:5.7 )

ISSN: 2296-861X

年卷期: 2023 年 10 卷

页码:

收录情况: SCI

摘要: The lipids of the oyster (Crassostrea hongkongensis) have a special physiological activity function, which is essential to maintain human health. However, comprehensive research on their lipids species and metabolism is not so common. In our study, based on the high-performance liquid chromatography/quadrupole time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted lipidomics research of Crassostrea hongkongensis fresh and dried products was determined. Meanwhile, we analyzed its lipid outline, screened the differences between the lipid molecules of Crassostrea hongkongensis fresh and dried products, and determined the lipid metabolic pathway. Results showed that 1,523 lipid molecules were detected, in which polyunsaturated fatty acids mostly existed in such lipids as phosphoglyceride. Through the multivariate statistical analysis, according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239 different lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST), 36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG), the differential lipid molecules were analyzed to mainly determine the role of the glycerin phospholipid metabolic pathway. As a whole, the results of this study provide the theoretical basis for the high-value utilization of oysters and are helpful to the development of oysters' physiological activity functions and deep utilization.

分类号:

  • 相关文献
作者其他论文 更多>>