JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis
文献类型: 外文期刊
第一作者: Wang, Zeyu
作者: Wang, Zeyu;Yang, Yanchao;Li, Sirui;Wang, Kui;Zhang, Jie;Yang, Yanchao;Francis, Frederic;Ma, Weihua;Soberon, Mario;Bravo, Alejandra;Yan, Shuo;Shen, Jie;Yan, Shuo;Shen, Jie
作者机构:
期刊名称:PLOS PATHOGENS ( 影响因子:6.7; 五年影响因子:6.7 )
ISSN: 1553-7366
年卷期: 2024 年 20 卷 1 期
页码:
收录情况: SCI
摘要: A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.
分类号:
- 相关文献
作者其他论文 更多>>
-
D-Limonene Affects the Feeding Behavior and the Acquisition and Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci
作者:Wei, Yan;Gao, Liming;Li, Kailong;Zhang, Zhuo;Zhang, Deyong;Chen, Jianbin;Peng, Jing;Gao, Yang;Du, Jiao;Yan, Shuo;Shi, Xiaobin;Liu, Yong;Wei, Yan;Shi, Xiaobin;Liu, Yong;Zhang, Zhanhong
关键词:Bemisia tabaci; EPG; odorant-binding protein; fluorescence competitive binding assays; molecular docking
-
Animal manures increased maize yield by promoting microbial activities and inorganic phosphorus transformation in reclaimed soil aggregates
作者:Sun, Xiaodong;Li, Haipeng;Zhang, Jie;Xu, Minggang;Hao, Xianjun;Gao, Wenjun;Cai, Andong
关键词:Animal manures; Microbial activities; Inorganic phosphorus fractions; Aggregate; Reclaimed soil
-
Automatic grading evaluation of winter wheat lodging based on deep learning
作者:Zang, Hecang;Su, Xinqi;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Zang, Hecang;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Su, Xinqi;Shen, Hualei;Wang, Yanjing;Hu, Weiguo
关键词:UAV image; winter wheat; deep learning; lodging degree; lodging area
-
Theoretical insights into the mechanism underlying aflatoxin B1 transformation by the BsCotA-methyl syringate system
作者:Wang, Xiaolu;Cui, Lin;Luo, Huiying;Huang, Huoqing;Tu, Tao;Qin, Xing;Wang, Yuan;Zhang, Jie;Wang, Yaru;Yao, Bin;Bai, Yingguo;Su, Xiaoyun;Liu, Mengting;Qi, Zheng
关键词:Laccase-Mediator System; Aflatoxin B 1; Methyl Syringate; Free Radical; Coupling
-
Assessing Changes in Climatic Suitability for Sesame Cultivation in China (1978-2019) Based on Fuzzy Mathematics
作者:Wang, Xue;Huang, Ming;Li, Youjun;Wang, Xue;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Gao, Tongmei
关键词:sesame (Sesamum indicum L.); climate indicators; climatic suitability; climate change
-
Oxidative degradation and detoxification of multiple mycotoxins using a dye-decolorizing peroxidase from the white-rot fungus Bjerkandera adusta
作者:Shao, Huimin;Su, Xiaoyun;Wang, Yaru;Zhang, Jie;Tu, Tao;Wang, Xiaolu;Huang, Huoqing;Yao, Bin;Luo, Huiying;Qin, Xing
关键词:Aflatoxin; Zearalenone; Deoxynivalenol; Detoxification; Dye-decolorizing peroxidase
-
Identification of allelic relationship and translocation region among chromosomal translocation lines that leads to less-seed watermelon
作者:Jiao, Di;Anees, Muhammad;Zhu, Hongju;Liu, Wenge;Jiao, Di;Zhao, Hong;Zhang, Jie;Zhang, Haiying;Gong, Guoyi;Xu, Yong;Sun, Honghe;Sun, Honghe
关键词: