The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction
文献类型: 外文期刊
第一作者: Li, Yuxiang
作者: Li, Yuxiang;Wang, Juan;Gao, Yadi;Quan, Ruidang;Zhao, Zihan;Jiang, Lei;Huang, Rongfeng;Qin, Hua;Wang, Juan;Huang, Rongfeng;Qin, Hua;Pandey, Bipin K.;Ogorek, Lucas Leon Peralta;Zhao, Yu
作者机构:
期刊名称:PLANT CELL ( 影响因子:11.6; 五年影响因子:12.9 )
ISSN: 1040-4651
年卷期: 2024 年 36 卷 6 期
页码:
收录情况: SCI
摘要: Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits. The phytohormone ethylene fine-tunes rice crown root development by activating WUSCHEL-RELATED HOMEOBOX 11 expression in response to soil compaction.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato
作者:Muhammad, Tayeb;Yang, Tao;Wang, Baike;Yang, Haitao;Wang, Juan;Yu, Qinghui;Tuerdiyusufu, Diliaremu
关键词:tomato; CRT gene family; endoplasmic reticulum; bioinformatics; abiotic stress; gene expression
-
Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils
作者:Chen, Ning;Huang, Danyu;Liu, Xiantang;Zhou, Dongmei;Chen, Ning;Zeng, Yu;Wu, Tongliang;Fang, Guodong;Wang, Yujun;Wang, Juan;Liu, Guangxia;Gao, Yan
关键词:agricultural amendment; hydroxyl radicals; soil aggregate fractionation, paddy soil; organic contaminantattenuation
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词:
-
Ethylene Modulates Rice Root Plasticity under Abiotic Stresses
作者:Qin, Hua;Li, Yuxiang;Huang, Rongfeng;Qin, Hua;Huang, Rongfeng;Xiao, Minggang
关键词:root development; ethylene; abiotic stress; rice
-
Identification and expression analysis of the bZIP and WRKY gene families during anthocyanins biosynthesis in Lagerstroemia indica L
作者:Gu, Cuihua;Hong, Sidan;Shang, Linxue;Zhang, Guozhe;Zhao, Yu;Ma, Qingqing;Wang, Jie;Wang, Jie;Ma, Dandan;Wang, Jie
关键词:bZIP; WRKY; Gene family; Lagerstroemia indica; Flower color
-
Detection of clinical Serratia marcescens isolates carrying bla KPC-2 in a hospital in China
作者:Tang, Biao;Yue, Min;Tang, Biao;Zhao, Haoyu;Huang, Yuting;Tang, Biao;Zhao, Haoyu;Huang, Yuting;Zhao, Haoyu;Wang, Juan;Li, Jie;Liu, Na;Yue, Min
关键词:Serratia marcescens; Antimicrobial resistance; Genome sequences; Human