The UDP-glycosyltransferase UGT352A3 contributes to the detoxification of thiamethoxam and imidacloprid in resistant whitefly

文献类型: 外文期刊

第一作者: Du, Tianhua

作者: Du, Tianhua;Xue, Hu;Zhang, Youjun;Yang, Xin;Du, Tianhua;Zhou, Xiaomao;Gui, Lianyou;Belyakova, Natalia A.

作者机构:

关键词: UDP-glycosyltransferases; Enzyme activity; Bemisia tabaci; Insecticide resistance; Molecular docking

期刊名称:PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY ( 影响因子:4.0; 五年影响因子:4.5 )

ISSN: 0048-3575

年卷期: 2025 年 208 卷

页码:

收录情况: SCI

摘要: Uridine diphosphate (UDP)-glycosyltransferases are essential phase-II detoxification enzymes that glycosylate lipophilic endogenous and xenobiotic compounds and they are thought to play a role in driving the evolution of insecticide resistance. To examine if the resistance to thiamethoxam and imidacloprid was associated with enhancement of UDP-glycosyltransferase in the whitefly, Bemisia tabaci, we first conducted UDP enzyme activity assays in resistant and sensitive strains in the absence and presence of UGT inhibitors. We found that the UGT enzyme content of resistant whitefly was significantly 5.02- to 10.69-fold higher than that of sensitive whitefly. Individual UGT inhibitors effectively inhibited UGT activity in resistant strains and their effect was synergistic when applied in combination. We then used bioinformatic, molecular, genetic and in silico approaches to determine if UGT352A3 encoded a key enzyme linked to neonicotinoid resistance. In resistant strains, UGT352A3 expression was elevated 1.8- to 6.6-fold compared to susceptible strains, which correlated with higher resistance ratios. RNAi-mediated knockdown of UGT352A3 in resistant whitefly strains significantly heightened their sensitivity to the insecticides, thiamethoxam and imidacloprid. Molecular docking analyses further confirmed a strong binding affinity between UGT352A3 and thiamethoxam and imidacloprid, which supported a role in their metabolism. These findings suggest that UGT352A3 is a critical factor in the development of resistance to thiamethoxam and imidacloprid in whitefly, underscoring its important potential as a new pest resistance management target.

分类号:

  • 相关文献
作者其他论文 更多>>