Research on Monitoring Topping Time of Cotton Based on AdaBoost plus Decision Tree

文献类型: 外文期刊

第一作者: Li, Yibai

作者: Li, Yibai;Cao, Guangqiao;Liu, Dong;Zhang, Jinlong;Li, Liang;Chen, Cong;Ji, Chao

作者机构:

期刊名称:DISCRETE DYNAMICS IN NATURE AND SOCIETY ( 影响因子:1.457; 五年影响因子:1.219 )

ISSN: 1026-0226

年卷期: 2022 年 2022 卷

页码:

收录情况: SCI

摘要: Topping is an important part in cotton field management, the spraying time has a great impact on cotton quality. In agricultural production, the strategy of timing the cotton topping mainly relies on manual inspections and experience, which is lack of efficiency and science. To solve the problem, this paper uses a drone equipped with a multispectral camera to collect the multispectral information of the cotton canopy of 12 days which includes before and after the topping operation in Shihezi. At the same time, the information of cotton plant height, the number of fruiting branches, and flower buds are collected. Compare multiple band combinations and vegetation index; the combined data of 550+730+790nm band is selected as the model input. AdaBoost+decision tree method is proposed as a fitting model, the fitting results show that the coefficient of determination (R-2) between multispectrum and cotton plant height is 0.96, and the average prediction error (RMSEP) is 0.40cm, the coefficient of determination (R-2) between multispectrum information and the fruiting branches is 0.97, the prediction mean error (RMSEP) is 0.54, and the correlation determination (R-2) with the flower buds is 0.84, and the prediction mean error is (RMSEP) 0.49. The output data of the fitting model is used as the input of the topping time discriminant model, and the discriminant model can obtain an accuracy of 94.03%. The method in this paper can effectively monitor the growth status of cotton in the topping time and provide a technical path to scientifically determine the cotton topping time.

分类号:

  • 相关文献
作者其他论文 更多>>