GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
文献类型: 外文期刊
第一作者: Zhao, Zhenxi
作者: Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
作者机构:
关键词: Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
期刊名称:IEEE TRANSACTIONS ON MULTIMEDIA ( 影响因子:7.3; 五年影响因子:7.3 )
ISSN: 1520-9210
年卷期: 2024 年 26 卷
页码:
收录情况: SCI
摘要: Only a few key fish individuals can play a dominant role in actual fish group, therefore, it is reasonable to infer group activities from the relationship between individual actions. However, the complex underwater environment, rapid and similar fish individual movements are likely to cause the indistinct action characteristics, as well as adhesion of data distribution, and it is difficult to infer the relationship between individual actions directly by using graph convolutional network (GCN). Therefore, this article proposes a graph convolution vector calibration (GCVC) network for fish group activity recognition through individual action relationship reasoning. By improving reasoning ability of GCN, an activity feature vector calibration module is designed to solve the data adhesion and mismatch between the estimated and true distribution. The idea is to first count the distribution of the original data, and make each dimension of its active feature vector follow the Gaussian distribution, so as to generate a better similar category distribution. In addition, we also produced a fish activity dataset to verify the performance of the proposed algorithm. The experimental results show that the GCVC achieves a group activity recognition accuracy of 93.33%, and the Macro-F1 is 93.25%, which is 19.21% and 24.2% higher than before, respectively. By using GCVC, the corrected activity feature vector distribution is more consistent, and the data adhesion is reduced, the model can achieve more fully supervised learning.
分类号:
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review
作者:Luo, Na;Xu, Daming;Xing, Bin;Yang, Xinting;Sun, Chuanheng;Luo, Na;Xu, Daming;Xing, Bin;Yang, Xinting;Sun, Chuanheng;Luo, Na;Xu, Daming;Xing, Bin;Yang, Xinting;Sun, Chuanheng;Sun, Chuanheng
关键词:Convolutional neural network; Spectroscopic technologies; Evaluation; Food quality
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Identification of Characteristic Bioactive Compounds in Silkie Chickens, Their Effects on Meat Quality, and Their Gene Regulatory Network
作者:Yang, Xinting;Tang, Chaohua;Ma, Bowen;Zhao, Qingyu;Jia, Yaxiong;Meng, Qingshi;Qin, Yuchang;Zhang, Junmin
关键词:silkie chicken; characteristic metabolite; characteristic lipid; meat quality; volatile flavor compound; gene regulatory network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Early diagnosis of greenhouse cucumber downy mildew in seedling stage using chlorophyll fluorescence imaging technology
作者:Chen, Xiaohui;Shi, Dongyuan;Yang, Xinting;Li, Ming;Chen, Xiaohui;Li, Ming;Shi, Dongyuan;Li, Ming;Zhang, Hengwei;Sanchezerez, Jose Antonio
关键词:Pseudoperonospora cubensis; Chlorophyll fluorescence imaging; Bayesian estimation; Feature selection; CNN; Early detection