Transcriptome profiling of developing leaf and shoot apices to reveal the molecular mechanism and co-expression genes responsible for the wheat heading date
文献类型: 外文期刊
第一作者: Yang, Yuxin
作者: Yang, Yuxin;Zhang, Xueying;Wu, Lifen;Zhang, Lichao;Liu, Guoxiang;Xia, Chuan;Liu, Xu;Kong, Xiuying;Wu, Lifen
作者机构:
关键词: Wheat; Heading date; Gene expression; Transcription factors; Weighted gene co-expression network analysis
期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )
ISSN: 1471-2164
年卷期: 2021 年 22 卷 1 期
页码:
收录情况: SCI
摘要: Background Wheat is one of the most widely planted crops worldwide. The heading date is important for wheat environmental adaptability, as it not only controls flowering time but also determines the yield component in terms of grain number per spike. Results In this research, homozygous genotypes with early and late heading dates derived from backcrossed progeny were selected to conduct RNA-Seq analysis at the double ridge stage (W2.0) and androgynous primordium differentiation stage (W3.5) of the leaf and apical meristem, respectively. In total, 18,352 differentially expressed genes (DEGs) were identified, many of which are strongly associated with wheat heading date genes. Gene Ontology (GO) enrichment analysis revealed that carbohydrate metabolism, trehalose metabolic process, photosynthesis, and light reaction are closely related to the flowering time regulation pathway. Based on MapMan metabolic analysis, the DEGs are mainly involved in the light reaction, hormone signaling, lipid metabolism, secondary metabolism, and nucleotide synthesis. In addition, 1,225 DEGs were annotated to 45 transcription factor gene families, including LFY, SBP, and MADS-box transcription factors closely related to flowering time. Weighted gene co-expression network analysis (WGCNA) showed that 16, 336, 446, and 124 DEGs have biological connections with Vrn1-5 A, Vrn3-7B, Ppd-1D, and WSOC1, respectively. Furthermore, TraesCS2D02G181400 encodes a MADS-MIKC transcription factor and is co-expressed with Vrn1-5 A, which indicates that this gene may be related to flowering time. Conclusions RNA-Seq analysis provided transcriptome data for the wheat heading date at key flower development stages of double ridge (W2.0) and androgynous primordium differentiation (W3.5). Based on the DEGs identified, co-expression networks of key flowering time genes in Vrn1-5 A, Vrn3-7B, WSOC1, and Ppd-1D were established. Moreover, we discovered a potential candidate flowering time gene, TraesCS2D02G181400. Taken together, these results serve as a foundation for further study on the regulatory mechanism of the wheat heading date.
分类号:
- 相关文献
作者其他论文 更多>>
-
Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat
作者:He, Yuqi;Zhang, Kaixuan;Shi, Yaliang;Lin, Hao;Huang, Xu;Lu, Xiang;Wang, Zhirong;Li, Wei;Tang, Yu;Liu, Xu;Zhou, Meiliang;Feng, Xibo;Shi, Taoxiong;Chen, Qingfu;Wang, Junzhen;Chapman, Mark A.;Germ, Mateja;Luthar, Zlata;Kreft, Ivan;Janovska, Dagmar;Meglic, Vladimir;Woo, Sun-Hee;Quinet, Muriel;Fernie, Alisdair R.
关键词:Domestication; Migration; Artificial selection; Buckwheat; Genomics
-
Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes
作者:Yang, Ziyi;Yang, Ruizhen;Bai, Wanqing;Chen, Wenxi;Kong, Xiuying;Qiao, Weihua;Zhang, Yunwei;Sun, Jiaqiang;Zhou, Yun
关键词:wheat; salt tolerance; reactive oxygen species; Q; TaWD40
-
Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization
作者:Zhang, Ke;Zhang, Ting;Xu, Yangbin;Lei, Yu;Liu, Gongwei;Qian, Quan;Mao, Yunrui;Kalds, Peter;Yang, Yuxin;Wang, Xiaolong;Chen, Yulin;He, Chong;Wang, Meili;Wang, Lei;Suo, Langda;Wu, Yujiang;Cuoji, Awang;Suo, Langda;Wu, Yujiang;Cuoji, Awang;Guo, Mengmeng;Guo, Jiazhong;Brugger, Daniel;Gan, Shangquan;Wang, Xiaolong;Chen, Yulin;Wang, Xiaolong;Chen, Yulin;Zhao, Fangqing
关键词:
-
Fungal necromass carbon contributes to organic carbon sequestration within soil macroaggregates under manure application combined with plastic film mulching
作者:Liu, Xu;An, Tingting;Xu, Yingde;Li, Shuangyi;Wang, Jingkuan;Liu, Xu;Bol, Roland;Peng, Chang
关键词:Plastic film mulching; Fertilizer application; Microbial necromass carbon; Soil aggregates; Soil organic carbon
-
TaMYB72 directly activates the expression of TaFT to promote heading and enhance grain yield traits in wheat (Triticum aestivum L.)
作者:Wu, Lifen;Xie, Zhencheng;Li, Danping;Chen, Yaoyu;Xia, Chuan;Kong, Xiuying;Liu, Xu;Zhang, Lichao;Wu, Lifen;Liu, Xu
关键词:
-
Identification of Crucial Modules and Genes Associated with Bt Gene Expression in Cotton
作者:Zhao, Guiyuan;Wu, Liqiang;Wang, Xingfen;Zhang, Guiyin;Zhao, Guiyuan;Geng, Zhao;Liu, Jianguang;Tian, Haiyan;Liu, Xu;An, Zetong;Zhao, Ning;Zhang, Hanshuang;Wang, Yongqiang
关键词:cotton; molecular breeding; Bacillus thuringiensis toxins; WGCNA
-
Whole-genome resequencing reveals genetic differentiation in cigar tobacco
作者:Jiang, Xun;Li, Yuan;Ji, Yan;Yang, Aiguo;Dai, Peigang;Zhang, Xingwei;Liu, Guoxiang;Wang, Jun;Chen, Liping;Qin, Yanqing
关键词:Cigar tobacco; Whole-genome resequencing; Genetic differentiation; Agronomic traits; Germplasm resources