Identification of metabolic enzyme genes linked to mesosulfuron-methyl resistance in Bromus japonicus

文献类型: 外文期刊

第一作者: Zhao, Hui

作者: Zhao, Hui;Zeng, Yalin;Bai, Lianyang;Liu, Leicheng;Nie, Xiaoyi;Pan, Lang;Wang, Junzhi;Bai, Lianyang

作者机构:

关键词: Bromus japonicus; Mesosulfuron-methyl; Non-target site resistance; Cytochrome P450; UDP-Glucosyl transferases; ATP-Binding cassette transporters

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:5.7; 五年影响因子:6.4 )

ISSN: 0981-9428

年卷期: 2025 年 221 卷

页码:

收录情况: SCI

摘要: Bromus japonicus is a very troublesome weed in major winter wheat fields in China and substantially reduces wheat yield. Resistance to acetolactate synthase (ALS)-inhibiting herbicides in B. japonicus has become increasingly prevalent in recent years. While the mechanism of target site resistance (TSR) to ALS-inhibiting herbicides in B. japonicus has been well elucidated, the understanding of non-target site resistance (NTSR) remains limited. In this study, we identified a B. japonicus population (BJ-NTSR-1) which has developed resistance to mesosulfuron-methyl. Compared to the mesosulfuron-methyl-susceptible population (BJ-S), the resistance level of BJ-NTSR-1 was found to be 22.56 times higher. Based on the results of ALS gene sequencing and relative expression analyses, TSR was not detected in the BJ-NTSR-1 population. Additionally, pretreatment with cytochrome P450 (CYP450) and glutathione S-transferase (GST) inhibitors did not reverse the resistance to mesosulfuron-methyl in BJ-NTSR-1 population. RNA-seq and RT-qPCR analyses revealed that, three uridine 5 ' diphospho-glucosyl transferase (UGT) genes (UGT76F1, UGT88F5, and UGT85A1), four ATP-binding cassette (ABC) transporter genes (ABCB19s, ABCG1, and ABCB21), and three CYP450 genes (CYP71C1, CYP71C2, and CYP72A15) are significantly upregulated in the BJ-NTSR-1 population. Among these genes, the overexpression of ABCG1 enhanced yeast resistance to mesosulfuron-methyl. These genes are likely involved in mediating NTSR to mesosulfuron-methyl in the BJ-NTSR-1 population. This study presents the first global report that CYP450, UGT, and ABC transporter genes may collectively mediate NTSR to ALS-inhibiting herbicides in Brome species.

分类号:

  • 相关文献
作者其他论文 更多>>