FT-NIR Spectra of Different Dimensions Combined with Machine Learning and Image Recognition for Origin Identification: An Example of Panax notoginseng
文献类型: 外文期刊
第一作者: Zuo, Zhi-Tian
作者: Zuo, Zhi-Tian;Yao, Zeng-Yu;Zuo, Zhi-Tian;Wang, Yuan-Zhong
作者机构:
期刊名称:ACS OMEGA ( 影响因子:4.3; 五年影响因子:4.4 )
ISSN: 2470-1343
年卷期: 2025 年 10 卷 7 期
页码:
收录情况: SCI
摘要: Panax notoginseng (P. notoginseng) is a traditional medicinal plant with high medicinal and economic values. The authenticity of P. notoginseng often determines its quality, and the quality of geographical indication (GI)-producing areas is usually superior to that of other producing areas, which are exploited by unscrupulous traders and affect the market order. The aim of this study was to characterize and identify the geographic origin of P. notoginseng using Fourier transform near-infrared (FT-NIR) spectroscopy, with rapid detection combined with multivariate analysis. The use of principal component analysis and correlation spectral analysis enabled the initial differential characterization and identification of P. notoginseng from different production areas. Then, random forest (RF) and support vector machine (SVM) models were established, and the results show that the results showed that the second-order derivative preprocessing and successive projection algorithm feature extraction achieved 100% classification correctness and the model training time is the shortest. Further constructing the image recognition model, synchronous two-dimensional correlation spectroscopy (2DCOS) image combined with residual convolutional neural network achieved accurate classification (accuracy of 100%) and did not require complex preprocessing and artificial feature extraction process, to maximize the avoidance of errors caused by human factors. The recognition results of the externally validated set showed that the image recognition method has a strong generalization ability and has a high potential for application in the identification of P. notoginseng production areas.
分类号:
- 相关文献
作者其他论文 更多>>
-
Application of ATR-FTIR Spectrum Combined With Ensemble Learning and Deep Learning for Identification of Amomum tsao-ko at Different Drying Temperatures
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Amomum tsao-ko; deep learning; drying temperatures; ensemble learning; machine learning
-
Based on metabolomics and fourier transforms near infrared spectroscopy characterization of Lanxangia tsaoko chemical profile differences among fruit types and development of rapid identification and nutrient prediction models
作者:Fu, Deng-Ke;Yang, Wei-Ze;Yang, Mei-Quan;Yang, Tian-Mei;Wang, Yuan-Zhong;Zhang, Jin-Yu;Fu, Deng-Ke
关键词:Lanxangia tsao-ko; Phenotype; Metabolic differences; 2DCOS; ResNet; PLSR
-
Spatial and temporal distribution characteristics of Paris polyphylla var. yunnanensis and the prediction of steroidal saponins content
作者:Zhong, Chen;Li, Li;Zhong, Chen;Wang, Yuan-Zhong
关键词:Paris polyphylla var. yunnanensis; Habitat suitability; FT-IR spectroscopy; Chemometrics; Steroidal saponins
-
A rapid method for identification of Lanxangia tsaoko origin and fruit shape: FT-NIR combined with chemometrics and image recognition
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang;Yang, Shao-bing;Wang, Yuan-zhong
关键词:chemometrics; classification; Fourier transform-near infrared spectroscopy; image recognition; Lanxangia tsaoko
-
Analysis of Chemical Changes during Maturation of Amomum tsao-ko Based on GC-MS, FT-NIR, and FT-MIR
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:
-
FT-IR spectroscopy coupled with HPLC for qualitative and quantitative analysis of different parts of Gentiana rigescens Franch
作者:He, Gang;Zhu, Xin-yan;Wang, Yuan-zhong;He, Gang;Shen, Tao
关键词:Gentiana rigescens; Total secoiridoids; FT-IR; HPLC; Content prediction
-
Suitable habitat prediction and identification of origin of Lanxangia tsao-ko
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Medicinal plant; FT-NIR spectroscopy; Machine learning; Suitable habitats; Origin identification