Variation in Adzuki Bean (Vigna angularis) Germplasm Grown in China

文献类型: 外文期刊

第一作者: Redden, Robert J.

作者: Redden, Robert J.;Basford, Kaye E.;Kroonenberg, Pieter M.;Islam, F. M. Amirul;Wang, Shumin;Cao, Yongsheng;Zong, Xuxiao;Wang, Xiaoming

作者机构:

关键词: genetic variation;genetic adaptation;plant breeding;trait expression;breeding objectives;bean germplasm variation;agroecological environment;genotype-environment characterization

期刊名称:CROP SCIENCE ( 影响因子:2.319; 五年影响因子:2.631 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Adzuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] is cultivated in a wide range of agroecological environments from north to south China. An understanding of the genetic variation for crop adaptation facilitates plant breeding. A core germplasm of 231 accessions (selected from a representative collection of 3908 Chinese landraces) was evaluated at diverse locations in China in 1998 to (i) compare differences among sources of landraces for trait expression, (ii) identify underlying patterns of diversity, and (iii) characterize patterns of genetic adaptation across environments. Three-mode pattern analysis of phenology, yield and yield components, and plant height data identified six accession groups with various levels of cohesiveness. The greatest diversity occurred in the germplasm from the provinces of mid-north China, particularly the lower Yellow River basin, with a partial latitudinal separation of the accession origins in different groups. The most contrasting groups came, respectively, from south China (Sichuan-Anhui), characterized by late maturity and small seed size, and from north China (Liaoning-Heilongjiang), characterized by earliness and short habit. Analysis of the multilocation screening provided genotype x environment characterization of the accession groups and a capability to predict the most suitable groups for specific target environments and breeding objectives, thereby enabling plant breeders to make efficient and effective use of germplasm.

分类号: S5

  • 相关文献

[1]Evaluation of quality traits and their genetic variation in global collections of Brassica napus L. Chen, Biyun,Xu, Kun,Li, Hao,Gao, Guizhen,Yan, Guixin,Qiao, Jiangwei,Wu, Xiaoming. 2018

[2]Evaluation of yield and agronomic traits and their genetic variation in 488 global collections of Brassica napus L.. Chen, Biyun,Xu, Kun,Li, Jun,Li, Feng,Qiao, Jiangwei,Li, Hao,Gao, Guizhen,Yan, Guixin,Wu, Xiaoming.

[3]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[4]Variation in temperature requirements for germination and early seedling root development in Chamaecrista rotundifolia and three allied species. Xu, MG,McDonald, CK,Liu, CJ,Hacker, JB. 2000

[5]Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys. Zhou, Xuming,Liu, Zhijin,Wang, Boshi,Wang, Ziming,Liu, Guangjian,Ren, Baoping,Shi, Fanglei,Li, Ming,Zhou, Xuming,Peterfi, Zalan,Gladyshev, Vadim N.,Meng, Xuehong,Tian, Shilin,Cao, Yinchuan,Gao, Lianju,Cao, Zhisheng,Jiang, Zhi,Li, Ruiqiang,Chang, Jiang,Li, Junsheng,Li, Mingzhou,Tian, Shilin,Orozco-ter Wengel, Pablo,Bruford, Michael W.,Wen, Changlong,Yu, Shuancang,Garber, Paul A.,Garber, Paul A.,Pan, Huijuan,Ye, Xinping,Xiang, Zuofu,Edwards, Scott V.,Li, Dayong,Li, Baoguo.

[6]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[7]A High-Throughput Standard PCR-Based Genotyping Method for Determining Transgene Zygosity in Segregating Plant Populations. Geng, Lige,Deng, Dewayne D.,Wubben, Martin J.,Jenkins, Johnie N.,McCarty, Jack C., Jr.,Abdurakhmonov, Ibrokhim. 2017

[8]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[9]Crop Wild Relatives-Undervalued, Underutilized and under Threat?. Ford-Lloyd, Brian V.,Armstrong, Susan J.,Kell, Shelagh P.,Maxted, Nigel,Schmidt, Markus,Barazani, Oz,Hadas, Rivka,Engels, Jan,Hammer, Karl,Khoshbakht, Korous,Kang, Dingming,Li, Yinghui,Qiu, Lijuan,Long, Chunlin,Lu, Bao-Rong,Ma, Keping,Ge, Song,Wei, Wei,Viet Tung Nguyen,Zhang, Zongwen.

[10]Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhou, Yilin,Duan, Xiayu.

[11]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

[12]Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Appiano, Michela,Visser, Richard G. F.,Bai, Yuling,Pavan, Stefano,Bracuto, Valentina,Ricciardi, Luigi,Catalano, Domenico,Zheng, Zheng,Lotti, Concetta.

[13]Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers. Zhang, Chi-Hong,Li, Dao-Yuan,Pan, Da-Jian,Jia, Ji-Zeng,Dong, Yu-Shen.

[14]Inheritance of anthocyanin content in the ripe berries of a tetraploid x diploid grape cross population. Liang, Zhenchang,Li, Shaohua,Liang, Zhenchang,Wu, Benhong,Liang, Zhenchang,Wu, Benhong,Sang, Min,Ma, Aihong,Zhao, Shengjian,Zhong, Gan-Yuan.

[15]Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features. Appiano, Michela,Martinez, Miguel Santillan,Visser, Richard G. F.,Bai, Yuling,Catalano, Domenico,Lotti, Concetta,Zheng, Zheng,Ricciardi, Luigi,Pavan, Stefano. 2015

[16]Characterization of an RNase Z nonsense mutation identified exclusively in environment-conditioned genic male sterile rice. Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Lu, Hai-Ping,Shu, Qing-Yao,Liu, Qing-Long,Gong, Jun-Yi,Zhu, Yu-Jun,Yan, Wengui. 2014

[17]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[18]The use of chloroplast microsatellite markers for assessing cytoplasmic variation in a watermelon germplasm collection. Hu, J-B,Li, J-W,Li, Q.,Hu, J-B,Li, J-W,Li, Q.,Ma, S-W,Wang, J-M.

[19]Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Bagheri, Hedayat,El-Soda, Mohamed,van Oorschot, Inge,Hanhart, Corrie,Keurentjes, Joost J. B.,Koornneef, Maarten,Aarts, Mark G. M.,Bagheri, Hedayat,El-Soda, Mohamed,Bonnema, Guusje,Jansen-van den Bosch, Tanja,Mank, Rolf,Meng, Lin,Wu, Jian,Koornneef, Maarten. 2012

[20]Genetic and genotype x environment interaction effects for the content of seven essential amino acids in indica rice. Wu, JG,Shi, CH,Zhang, XM,Katsura, T. 2004

作者其他论文 更多>>