Reducing plastic film mulching and optimizing agronomic management can ensure food security and reduce carbon emissions in irrigated maize areas
文献类型: 外文期刊
第一作者: Zhang, Guoqiang
作者: Zhang, Guoqiang;Ming, Bo;Xie, Ruizhi;Hou, Peng;Xue, Jun;Shen, Dongping;Li, Rongfa;Zhai, Juan;Zhang, Yuanmeng;Wang, Keru;Li, Shaokun;Chen, Jianglu
作者机构:
关键词: Sustainable agriculture; Corn production; Plastic film; Greenhouse gas emissions; Environmental pollution; Accumulated temperature utilization rate
期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:9.8; 五年影响因子:9.6 )
ISSN: 0048-9697
年卷期: 2023 年 883 卷
页码:
收录情况: SCI
摘要: Increasing crop yields to ensure food security while also reducing agriculture's environmental impacts to ensure green sustainable development are great challenges for global agriculture. Plastic film, widely used to improve crop yield, also creates plastic film residue pollution and greenhouse gas emissions that restricts the development of sustainable agriculture. So, one of those challenges is to reduce plastic film use while also ensuring food security, and thus promote green and sustainable development. A field experiment was conducted during 2017-2020 at 3 farmland areas, each with different altitudes and climate conditions, in northern Xinjiang, China. We investigated the effects on maize yield, economic returns, and greenhouse gas (GHG) emissions of plastic film mulching (PFM) versus no mulching (NM) methods in drip-irrigated maize production. We also chose maize hybrids with 3 different maturation times and used 2 planting densities to further investigate how those differences more specifically affect maize yield, economic returns, and greenhouse gas (GHG) emissions under each mulching method. We found that by using maize varieties with a utilization rate of accumulated temperature (URAT) <86.6 % with NM, and increasing the planting density by 3 plants m-2, yields and economic returns improved and GHG emissions reduced by 33.1 %, compared to those of PFM maize. The maize varieties with URATs between 88.2 % to 89.2 %, had the lowest GHG emissions. We discovered that by matching the required accumulated temperatures of various maize varieties to environmental accumulated temperatures, along with filmless and higher density planting, and modern irrigation and fertilization practices, yields increased and residual plastic film pollution and carbon emissions reduced. Therefore, these advances in agronomic management are important steps toward reducing pollution and achieving carbon peak and carbon neutrality goals.
分类号:
- 相关文献
作者其他论文 更多>>
-
Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China
作者:Shen, Dongping;Zhou, Linli;Fang, Liang;Wang, Zhen;Li, Shaokun;Shen, Dongping;Wang, Keru;Zhou, Linli;Fang, Liang;Wang, Zhen;Fu, Jiale;Zhang, Tingting;Liang, Zhongyu;Xie, Ruizhi;Ming, Bo;Hou, Peng;Xue, Jun;Zhang, Guoqiang;Li, Jianmin;Kang, Xiaojun
关键词:spring maize; varieties; planting density; irrigation; yield; water-use efficiency
-
Combination of magnetic field and ultraviolet for fouling control in saline wastewater distribution systems
作者:Liu, Zeyuan;Xiao, Yang;Zhou, Yunpeng;Hou, Peng;Zha, Yingdong;Li, Yunkai;Liu, Zeyuan;Xiao, Yang;Zhou, Yunpeng;Hou, Peng;Zha, Yingdong;Li, Yunkai;Liu, Zeyuan;Yu, Ruihong;Qu, Shen;Liu, Zeyuan;Yu, Ruihong;Qu, Shen;Muhammad, Tahir;Ma, Changjian
关键词:Saline wastewater; Biofouling; Particulates; Precipitates; Ultraviolet; Magnetic field
-
RT-Transformer: retention time prediction for metabolite annotation to assist in metabolite identification
作者:Xue, Jun;Li, Weihua;Xue, Jun;Ji, Hongchao;Wang, Bingyi;Wang, Bingyi
关键词:
-
Optimizing Maize Yield and Resource Efficiency Using Surface Drip Fertilization in Huang-Huai-Hai: Impact of Increased Planting Density and Reduced Nitrogen Application Rate
作者:Wu, Liqian;Zhang, Guoqiang;Yan, Zhenhua;Gao, Shang;Xu, Honggen;Zhou, Jiaqiang;Li, Dianjun;Liu, Yi;Xie, Ruizhi;Ming, Bo;Xue, Jun;Hou, Peng;Li, Shaokun;Wang, Keru;Wu, Liqian;Zhang, Guoqiang;Yan, Zhenhua;Gao, Shang;Xu, Honggen;Zhou, Jiaqiang;Li, Dianjun;Liu, Yi;Xie, Ruizhi;Ming, Bo;Xue, Jun;Hou, Peng;Li, Shaokun;Wang, Keru
关键词:surface drip fertilization; planting density; N application rate; yield; water and nitrogen use efficiency
-
Comparison and Optimal Method of Detecting the Number of Maize Seedlings Based on Deep Learning
作者:Jia, Zhijie;Xue, Jianfu;Zhang, Xinlong;Yang, Hongye;Yu, Xun;Feng, Dayun;Gao, Kexin;Ming, Bo;Li, Shaokun;Lu, Yuan;Liu, Jiale;Nie, Chenwei
关键词:unmanned aerial vehicle; maize seedling; object detection; counting
-
Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density
作者:Yan, Yanyan;Duan, Fengying;Li, Xia;Hou, Peng;Zhao, Ming;Li, Shaokun;Zhou, Wenbin;Yan, Yanyan;Dai, Tingbo;Duan, Fengying;Li, Xia;Zhou, Wenbin;Zhao, Rulang;Wang, Yonghong
关键词:
-
Improved bacterial composition and co-occurrence patterns of rhizosphere increased nutrient uptake and grain yield through cultivars mixtures in maize
作者:Jia, Xucun;Shang, Haipeng;Chen, Yibo;Lin, Mengjie;Wei, Yuepeng;Li, Yuxia;Li, Rongfa;Dong, Pengfei;Zhang, Yongen;Wang, Qun;Jia, Xucun;Li, Yuxia;Li, Rongfa;Dong, Pengfei;Wang, Qun;Jia, Xucun;Li, Yuxia;Li, Rongfa;Dong, Pengfei;Wang, Qun;Jia, Xucun;Li, Yuxia;Li, Rongfa;Dong, Pengfei;Wang, Qun;Chen, Yinglong;Zhang, Yongen
关键词:Cultivar mixtures; Bacterial community; Nutrient uptake; Co-occurrence network; Keystone taxa