Regulation of soybean drought response by mepiquat chloride pretreatment

文献类型: 外文期刊

第一作者: Wang, Xiyue

作者: Wang, Xiyue;Zhou, Xinyu;Qu, Zhipeng;Yan, Chao;Ma, Chunmei;Dong, Shoukun;Liu, Jun

作者机构:

关键词: drought stress; mepiquat chloride; soybean; molecular mechanism; physiology; growth characteristic

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )

ISSN: 1664-462X

年卷期: 2023 年 14 卷

页码:

收录情况: SCI

摘要: IntroductionSoybean is the world's most important cultivated crop, and drought can affect their growth and, eventually, yields. Foliar application of mepiquat chloride (MC) can potentially alleviate the damage caused by drought stress in plants; however, the mechanism of MC regulation of soybean drought response has not been studied. MethodsThis study investigated the mechanism of soybean drought response regulation by mepiquat chloride in two varieties of soybean, sensitive Heinong 65 (HN65) and drought-tolerant Heinong44 (HN44), under three treatment scenarios, normal, drought stress, and drought stress + MC conditions. Results and discussionMC promoted dry matter accumulation under drought stress, reduced plant height, decreased antioxidant enzyme activity, and significantly decreased malondialdehyde content. The light capture processes, photosystems I and II, were inhibited; however, accumulation and upregulation of several amino acids and flavonoids by MC was observed. Multi-omics joint analysis indicated 2-oxocarboxylic acid metabolism and isoflavone biosynthetic pathways to be the core pathways by which MC regulated soybean drought response. Candidate genes such as LOC100816177, SOMT-2, LOC100784120, LOC100797504, LOC100794610, and LOC100819853 were identified to be crucial for the drought resistance of soybeans. Finally, a model was constructed to systematically describe the regulatory mechanism of MC application in soybean under drought stress. This study fills the research gap of MC in the field of soybean resistance.

分类号:

  • 相关文献
作者其他论文 更多>>