Systematic Evaluation of Chiral Fungicide Imazalil and Its Major Metabolite R14821 (Imazalil-M): Stability of Enantiomers, Enantioselective Bioactivity, Aquatic Toxicity, and Dissipation in Greenhouse Vegetables and Soil

文献类型: 外文期刊

第一作者: Li, Runan

作者: Li, Runan;Pan, Xinglu;Tao, Yan;Jiang, Duoduo;Dong, Fengshou;Xu, Jun;Liu, Xingang;Wu, Xiaohu;Zheng, Yongquan;Chen, Zenglong

作者机构:

关键词: imazalil; metabolite; enantioselective bioactivity; aquatic toxicity; dissipation

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2019 年 67 卷 41 期

页码:

收录情况: SCI

摘要: Chiral pesticides are often produced and applied without distinguishing the difference of enantiomers, which sometimes leads to overuse and inaccurate risk assessment. Imazalil is a widely used chiral fungicide; its parent and major metabolite R14821 (imazalil-M) are usually detected in environmental and plant samples. The enantioselective bioactivity of imazalil enantiomers to seven typical pathogens (e.g., Fulvia fulva) was explored. S-(+)-Imazalil showed 3.00-6.59 times higher bioactivity than its antipode for selected pathogens. Molecular docking partly explained the mechanism of enantioselectivity in bioactivity. S-(+)-Imazalil had a stronger hydrophobic interaction and lower energy conformation with binding sites than R(-)-imazalil. The acute toxicity of S-(+)-imazalil was 1.23-fold and 2.25-fold more than R-(-)-imazalil to P. subcapitata and D. magna, respectively. And, S-(+)-imazalil-M had 2.21-fold and 1.70-fold higher toxicity than R-(-)-imazalil-M to P. subcapitata and D. magna, respectively. However, R-(-)-imazalil was 1.21 times more toxic than S-(+)-imazalil to D. rerio. The enantioselective dissipation of imazalil and imazalil-M was explored under greenhouse conditions. High-effective S-(+)-imazalil preferentially enriched in leaf and fruit of tomato and cucumber, and no enantioselective degradation was found in soil. Imazalil-M enantiomers formed in cucumber, leaf of cucumber, and tomato, and the EF values fluctuated between 0.332 and 0.499. The results could provide information for more accurate assessment of imazalil; they implicated that using S-(+)-imazalil could reduce pesticide input and the risk to D. rerio.

分类号:

  • 相关文献
作者其他论文 更多>>