A sialic acid-binding lectin with bactericidal and opsonic activities from Ruditapes philippinarum

文献类型: 外文期刊

第一作者: Zhang, Jianning

作者: Zhang, Jianning;Zhang, Yifei;Liu, Xiaoli;Liu, Xiaoli;Zhang, Linbao;Yang, Dinglong;Wei, Qianyu;Yang, Dinglong

作者机构:

关键词: Ruditapes philippinarum; Sialic acid-binding lectin; Pattern recognition receptor; Immune recognition

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN: 1050-4648

年卷期: 2019 年 94 卷

页码:

收录情况: SCI

摘要: In the present study, a sialic acid-binding lectin was cloned and characterized from Manila clam Ruditapes philippinarum (designed as RpSabl). The open reading frame of RpSabl encoded a polypepdde of 162 amino acids with a calculated molecular mass of 17.7 kDa. Analysis of the conserved domain suggested that RpSabl was a new member of the sialic acid-binding lectins family. In non-stimulated clams, RpSabl transcripts were constitutively expressed in all five tested tissues, especially in hepatopancreas. After Vibrio anguillarum challenge, the expression of RpSabl mRNA in hepatopancreas was significantly up-regulated at 3 h (3.8-fold, P < 0.05), 6 h (4.9-fold, P < 0.05), 12 h (12.3-fold, P < 0.01) and 24 h (9.7-fold, P < 0.01), while RpSabl transcripts in hemocytes was only significantly up-regulated at 6h (8.5-Fold, P < 0.01). MAI-mediated knockdown of RpSabl transcripts affected the survival rates of Manila clam against V. anguillarum, perhaps mainly due to the inhibited expression of antibacterial effectors (e.g. lysozyme and defensin). Moreover, recombinant protein of RpSabl (rRpSabl) possessed binding activities towards lipopolysaccharides (LPS), peptidoglycan (PGN) and glucan in vitro. Coinciding with the Pathogen-associated molecular patterns (PAMPs) binding assay, rRpSabl displayed broad bacterial-agglutination properties towards Vibrio harveyi, Vibrio splendidus, V. anguillarum, Enterobacter cloacae and Aeromonas hydrophila. Meanwhile, the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rRpSabl incubation. All these results showed that RpSabl could function as a versatile molecule involved in the innate immune responses of R. philippinarum.

分类号:

  • 相关文献
作者其他论文 更多>>