Assimilation of remote sensing into crop growth models: Current status and perspectives

文献类型: 外文期刊

第一作者: Huang, Jianxi

作者: Huang, Jianxi;Huang, Hai;Huang, Jianxi;Huang, Jianxi;Huang, Jianxi;Gomez-Dans, Jose L.;Lewis, Philip E.;Gomez-Dans, Jose L.;Ma, Hongyuan;Wu, Qingling;Lewis, Philip E.;Liang, Shunlin;Liang, Shunlin;Chen, Zhongxin;Xue, Jing-Hao;Wu, Yantong;Zhao, Feng;Wang, Jing;Xie, Xianhong

作者机构:

关键词: Remote sensing; Crop growth models; Data assimilation; Crop modelling; Crop yield prediction; Crop monitoring

期刊名称:AGRICULTURAL AND FOREST METEOROLOGY ( 影响因子:5.734; 五年影响因子:5.964 )

ISSN: 0168-1923

年卷期: 2019 年 276 卷

页码:

收录情况: SCI

摘要: Timely monitoring of crop lands is important in order to make agricultural activities more sustainable, as well as ensuring food security. The use of Earth Observation (EO) data allows crop monitoring at a range of spatial scales, but can be hampered by limitations in the data. Crop growth modelling, on the other hand, can be used to simulate the physiological processes that result in crop development. Data assimilation (DA) provides a way of blending the monitoring properties of EO data with the predictive and explanatory abilities of crop growth models. In this paper, we first provide a critique of both the advantages and disadvantages of both EO data and crop growth models. We use this to introduce a solid and robust framework for DA, where different DA methods are shown to be derived from taking different assumptions in solving for the a posteriori probability density function (pdf) using Bayes' rule. This treatment allows us to provide some recommendation on the choice of DA method for particular applications. We comment on current computational challenges in scaling DA applications to large spatial scales. Future areas of research are sketched, with an emphasis on DA as an enabler for blending different observations, as well as facilitating different approaches to crop growth models. We have illustrated this review with a large number of examples from the literature.

分类号:

  • 相关文献
作者其他论文 更多>>