Abscisic acid-triggered guard cell l-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure
文献类型: 外文期刊
第一作者: Zhang, Jing
作者: Zhang, Jing;Zhou, Mingjian;Ge, Zhenglin;Shen, Jie;Zhou, Can;Duan, Xingliang;Xie, Yanjie;Gotor, Cecilia;Romero, Luis C.;Gotor, Cecilia;Romero, Luis C.;Liu, Xin;Wu, Deliang;Yin, Xianchao;Wu, Deliang;Yin, Xianchao;Wu, Deliang;Yin, Xianchao
作者机构:
关键词: DES1; HY1; hydrogen sulfide
期刊名称:PLANT CELL AND ENVIRONMENT ( 影响因子:7.228; 五年影响因子:7.791 )
ISSN: 0140-7791
年卷期: 2020 年 43 卷 3 期
页码:
收录情况: SCI
摘要: Recent studies have demonstrated that hydrogen sulfide (H2S) produced through the activity of l-cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2S function in stomatal closure. We discovered that ABA-activated DES1 produces H2S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.
分类号:
- 相关文献
作者其他论文 更多>>
-
The UDP-glycosyltransferase gene OsUGT706E2 negatively regulates rice tolerance to blast disease and abiotic stresses
作者:Chen, Pingli;Jiang, Liqun;Zhang, Lanlan;Sun, Bingrui;Lv, Shuwei;Zhang, Jing;Yu, Hang;Mao, Xingxue;Fan, Zhilan;Li, Chen;Chen, Wenfeng;Liu, Qing
关键词:UDP-glycosyltransferase; Blast disease; Cold stress; Osmotic stress
-
In vivo haploid induction in cauliflower, kale, and broccoli
作者:Wang, Guixiang;Zong, Mei;Han, Shuo;Zhao, Hong;Duan, Mengmeng;Liu, Xin;Guo, Ning;Liu, Fan
关键词:
-
African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis
作者:Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue;Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue
关键词:African swine fever virus; I267L; hemorrhage; F3; tissue factor
-
Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase
作者:Wang, Yujie;Liu, Xin;Yuan, Bingqin;Chen, Xue;Zhao, Hanxi;Ali, Qurban;Zheng, Minghong;Tan, Zheng;Yao, Hemin;Zheng, Shuqing;Wu, Jingni;Xu, Jianhong;Shi, Jianrong;Wu, Huijun;Gao, Xuewen;Gu, Qin;Liu, Xin;Xu, Jianhong;Shi, Jianrong
关键词:Fusarium graminearum; rapid alkalinization factor; receptor kinase FERONIA; host immunity; plant growth
-
Mushroom alcohol(1-octen-3-ol)and other 7 aroma compounds selected from Chinese dry-cured hams can enhance saltiness perception
作者:Xiao, Zuobing;Liu, Longxue;Niu, Yunwei;Zhang, Jing;Xiao, Zuobing;Wang, Daoying;Zhou, Cunshan
关键词:Odor-induced saltiness enhancement; Chinese dry-cured hams; Key volatile compounds; Different concentration NaCl solution
-
Spatial and temporal patterns of above- and below- ground biomass over the Tibet Plateau grasslands and their sensitivity to climate change
作者:Wu, Yatang;Liu, Xiaoni;Li, Fu;Zhou, Bingrong;Zhang, Jing;Liu, Yiliang;Li, Han;Shen, Beibei;Shen, Beibei;Hou, Lulu;Xu, Dawei;Ding, Lei;Chen, Shiyang;Peng, Jinbang;Ding, Lei
关键词:Alpine grassland; Carbon; Belowground biomass; Cubist; Climate change; Altitude
-
Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway
作者:Lv, Chenghao;Liu, Xin;Qin, Si;Chen, Shiyun;Yi, Yuhang;Wen, Xinnian;Qin, Si;Li, Tao
关键词:crocin; Gardenia jasminoides Ellis; glycolipid metabolism disorder; gut microbiota; TLR4/Myd88/NF-kappa B pathway