Genome-Wide Identification of bZIP Gene Family in Lycium barbarum and Expression During Fruit Development

文献类型: 外文期刊

第一作者: Gao, Han

作者: Gao, Han;Zheng, Rui;Cao, Xiaoyu;Qin, Xiaoya;Bai, Xiaorong;Zhang, Xiyan;Yin, Yue;Ma, Yunni;Xiong, Aisheng;Zheng, Rui

作者机构:

关键词: Lycium barbarum; bZIP gene family; evolutionary analysis; gene expression; subcellular localization

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 10 期

页码:

收录情况: SCI

摘要: Wolfberry (Lycium barbarum L.) is a valued traditional medicinal plant and dietary supplement in China. The basic leucine zipper (bZIP) transcription factor (TF) family is a multifunctional group of regulatory proteins critical to plant biology, orchestrating processes such as growth and development, secondary metabolite biosynthesis, and stress responses to abiotic conditions. Despite its significance, limited information about this gene family in wolfberry is available. In this study, a total of 66 LbabZIP genes were identified, exhibiting a non-uniform distribution across all 12 chromosomes. Phylogenetic analysis divided these genes into 13 subgroups based on comparison with Arabidopsis bZIP proteins. Analysis of gene structures and conserved motifs revealed high similarities within individual subgroups. Gene duplication analysis indicated that dispersed duplication (DSD) and whole-genome duplication (WGD) events were the primary drivers of LbabZIP gene family expansion, with all duplicated genes subject to purifying selection. Cis-regulatory element (CRE) analysis of LbabZIP promoter regions identified numerous elements associated with plant growth and development, hormone signaling, and abiotic stress responses. Gene Ontology (GO) annotation further indicated that the LbabZIP genes are involved in transcriptional regulation, metabolism, and other biological processes. Transcriptome data and quantitative real-time PCR (qRT-PCR) analysis demonstrated tissue-specific expression patterns for several LbabZIP genes. Notably, LbaZIP21/40/49/65 showed significant involvement in wolfberry fruit development. Subcellular localization assays confirmed that these four proteins are nucleus-localized. This comprehensive analysis provides a theoretical foundation for future studies investigating the biological functions of LbabZIP genes, especially their role in wolfberry fruit development.

分类号:

  • 相关文献
作者其他论文 更多>>