Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress

文献类型: 外文期刊

第一作者: Gao, Jun

作者: Gao, Jun;Nie, Zhijuan;Xu, Gangchun;Xu, Pao;Gao, Jun;Nie, Zhijuan;Xu, Gangchun;Xu, Pao

作者机构:

关键词: Na+-H+ exchangers; Chinese tapertail anchovy; Hypotonic stress; Hypertonic stress; High environmental ammonia (HEA); Gene expression

期刊名称:BMC GENOMICS ( 影响因子:4.547; 五年影响因子:4.931 )

ISSN: 1471-2164

年卷期: 2022 年 23 卷 1 期

页码:

收录情况: SCI

摘要: Background In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. Results In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. Conclusions Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus.

分类号:

  • 相关文献
作者其他论文 更多>>