Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum L.

文献类型: 外文期刊

第一作者: Wang, Xiaoge

作者: Wang, Xiaoge;Lu, Xuke;Malik, Waciar Afzal;Chen, Xiugui;Wang, Junjuan;Wang, Delong;Wang, Shuai;Chen, Chao;Guo, Lixue;Ye, Wuwei

作者机构:

关键词: bZIP transcription factors; Gossypium hirsutum; Gene family; Abiotic stress; Interaction network

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:6.953; 五年影响因子:6.737 )

ISSN: 0141-8130

年卷期: 2020 年 146 卷

页码:

收录情况: SCI

摘要: Basic leucine zipper (bZIP) transcription factor plays an important role in various biological processes, such as response to biotic and abiotic stresses. In this study we performed a systematic investigation and analysis of bZIP gene family in Gossypium hirsutum to predict their functions in response to different abiotic stresses. A total of 207 bZIP genes were identified from Gossypium hirsutum genome and classified into 13 subfamilies through phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Annotation of GHbZIPs was performed based on well-studied Arabidopsis bZIPs to speculate the gene function. RNA-seq analysis was conducted to identify the co-expressed and differentially expressed bZIPs under cold, heat, salt and PEG treatments. Promoter analysis and interaction network of GHbZIP proteins demonstrated that ABA-activated signaling pathway was pivotal in the regulation of GHbZIPs, and GHbZIPs involved in ER stress were supposed to function through interaction with other GHbZIPs and ABA pathway. Cis-elements in the upstream and downstream of GHbZIPs interaction network were also discussed. These findings provided us with clues about functions of bZIP in Gossypium hirsutum. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

分类号:

  • 相关文献
作者其他论文 更多>>