Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.)

文献类型: 外文期刊

第一作者: Liu, Songzhong

作者: Liu, Songzhong;Feng, Gu;Chen, Qing;Liu, Songzhong;He, Hongju

作者机构:

关键词: biomass;plant growth;pungency

期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Effects of N and S supply on the growth and pungency (estimated as pyruvic acid levels) of Chinese spring onion (Allium fistulosum L. var. giganteum Makino) were investigated in two pot experiments using soilless growing media. In the first experiment the effects of S supply (0.01 and 4.00mmolLp# SO po) on the growth and pungency of Chinese spring onion were investigated among four cultivars with fleshy root type or long pseudostem type. In the second experiment the effects of different S (0.01 and 4.00mmolLp# SO po) and N (1.5, 3.0, 6.0, 12.0 and 24.0mmolLp# N) supply levels on the growth and pungency of Chinese spring onion were studied. Fleshy root spring onion had stronger pungency and larger pseudostem diameter than long pseudostem spring onion, and the pungency of fleshy root spring onion was regulated to a greater extent by N and S supply compared with long pseudostem spring onion. Increasing S supply level significantly increased the biomass, N and S uptake and pungency of all cultivars tested. The biomass of Chinese spring onion of fleshy root type (cv Longyao) and long root type (cv Zhangqiu) was more influenced by N supply than it was by cultivar or S supply. Low S supply decreased the pungency of the two cultivars with increasing N supply. No significant differences in N or S uptake or pungency were observed in the two cultivars with different S supply at the N supply level of 1.5mmolLp# N, however, cultivar differences in N and S uptake and pungency were investigated at high N supply (12.0mmolLp# N) and S supply (4.0mmolLp# SO po). Excessive N supply (24.0mmolLp#) significantly inhibited plant growth, retarded S assimilation, and decreased pungency. It is therefore essential to apply the optimum recommended rate of N fertilizer in Chinese spring onion production.

分类号: S6

  • 相关文献

[1]Enhanced plant growth, development and fiber yield of Bt transgenic cotton by an integration of plastic mulching and seedling transplanting. Dong, Hezhong,Li, Weijiang,Tang, Wei,Li, Zhenhuai,Zhang, Dongmei. 2007

[2]Effects of Nitrogen Rate and Split Application Ratio on Nitrogen Use and Soil Nitrogen Balance in Cotton Fields. Li Pengcheng,Dong Helin,Dong Helin,Liu Aizhong,Liu Jingran,Sun Miao,Li Yabing,Liu Shaodong,Zhao Xinhua,Mao Shuchun. 2017

[3]Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East-Asia Minor 1) nymphs. Li, Qingliang,Xue, Ming,Zhao, Haipeng,Li, Qingliang,Tan, Wei,Wang, Chenxiang. 2013

[4]Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality. Xiong, Jing,Wang, Jingguo,Chen, Qing,Xiong, Jing,Liu, Wei,Tian, Yongqiang. 2017

[5]Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Zhang, Jinpeng,Liu, Weihua,Yang, Xinming,Gao, Ainong,Li, Xiuquan,Wu, Xiaoyang,Li, Lihui.

[6]Expansins: roles in plant growth and potential applications in crop improvement. Marowa, Prince,Ding, Anming,Kong, Yingzhen.

[7]Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation. Song, Yu,Gao, Lihong,Song, Yu,Jiang, Chengyao. 2016

[8]Isolation and Characterization of Indole Acetic Acid Producing Root Endophytic Bacteria and Their Potential for Promoting Crop Growth. Yu, J.,Yu, J.,Yu, Z. H.,Wang, G. H.,Liu, X. B.,Fan, G. Q.. 2016

[9]Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Zhu, Bo,Xiong, Ai-Sheng,Peng, Ri-He,Jin, Xiao-Fen,Yao, Quan-Hong,Zhu, Bo,Xu, Jing,Meng, Xiu-Rong.

[10]The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. Zheng, Ming,Wang, Yihua,Liu, Xi,Sun, Juan,Wang, Yunlong,Xu, Yang,Lv, Jia,Long, Wuhua,Zhu, Xiaopin,Jiang, Ling,Wang, Chunming,Wan, Jianmin,Guo, Xiuping,Wan, Jianmin.

[11]Functional characterization and mapping of two MADS box genes from peach (Prunus persica). Xu Yong,Zhang Lin,Ma RongCai,Xu Yong,Zhang Lin,Ma RongCai.

[12]Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Wu, Qiang-Sheng,Zou, Ying-Ning,Wu, Qiang-Sheng,He, Xin-Hua,He, Xin-Hua,He, Xin-Hua,He, Xin-Hua.

[13]The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Song, Alin,Li, Ping,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Nikolic, Miroslav.

[14]Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Dai, Jianlong,Dong, Hezhong.

[15]Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Latef, Arafat Abdel Hamed Abdel,He Chaoxing.

[16]Involvement of 1-Methylcyclopropene in Plant Growth, Ethylene Production, and Synthase Activity of Inferior Spikelets in Hybrid Rice Differing in Panicle Architectures. Zhang, Junhua,Zhu, Lianfeng,Yu, Shengmiao,Jin, Qianyu,Zhang, Junhua.

[17]Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice. Wang, Zhaohai,Hong, Xiao,Hu, Keke,Wang, Ya,Wang, Xiaoxin,Li, Yang,Hu, Dandan,Cheng, Kexin,An, Baoguang,Li, Yangsheng,Wang, Zhaohai,Du, Shiyun. 2017

[18]Rootstocks influence fruit oleocellosis in 'Hamlin' sweet orange (Citrus sinensis L. Osbeck). Zheng, Yongqiang,Deng, Lie,He, Shaolan,Yi, Shilai,Zheng, Yongqiang,Zhou, Zhiqin,Zhao, Xuyang,Wang, Liang.

[19]Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Zhang, Y. P.,Yang, S. J.,Chen, Y. Y.,Zhang, Y. P.,Ding, H. D.,Yang, S. J.,Chen, Y. Y.,Zhu, X. H.. 2013

[20]Growth and physiological responses to water and nutrient stress in oil palm. Shao, Hong-bo,Sun, Cheng-xu,Cao, Hong-xing,Lei, Xin-tao,Xiao, Yong,Shao, Hong-bo. 2011

作者其他论文 更多>>