Enhanced Agrobacterium-mediated Transformation of Embryogenic Calli of Upland Cotton via Efficient Selection and Timely Subculture of Somatic Embryos

文献类型: 外文期刊

第一作者: Wu, Shen-Jie

作者: Wu, Shen-Jie;Wang, Hai-Hai;Li, Fei-Fei;Chen, Tian-Zi;Zhang, Jie;Jiang, Yan-Jie;Ding, Yezhang;Guo, Wang-Zhen;Zhang, Tian-Zhen;Wu, Shen-Jie

作者机构:

关键词: plant regeneration;transformation efficiency;Embryogenic Calli;selection cultivation;embryogenic calli morphology

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Agrobacterium-tumefaciens-mediated transformation of cotton embryogenic calli (EC) was enhanced by choosing appropriate EC and improving efficiency of coculture, selection cultivation, and plant regeneration. After 48-h cocultivation, the number of beta-glucuronidase (GUS)-positive calli characterized by yellow, loose, and fine-grained EC was twofold greater than that of gray, brown, and coarse-granule EC. It indicated that efficiency of transient transformation was affected by EC morphology. And transient transformation efficiency was also improved by cocultivation on the medium adding 50 mg l(-1) acetosyringone at 19 C for 48 h. Subculturing EC on the selection medium with low cell density was beneficial to production of more kanamycin-resistant (Km-R) calli lines. From an original 0.3-g EC, an average of 20 Km-R calli lines were obtained from a selection dish and the GUS-positive rate of Km-R clones was 81.97%. A large number of normal plants were rapidly regenerated on the differentiation medium with dehydration treatments and the GUS-positive rate of regeneration plants was about 72.60%. Polymerase chain reaction analysis of GUS-positive plantlets revealed a 100% positive detection rate for neomycin phosphotransferase II gene and uidA. Southern blot of transgenic plants regenerated from different Km-R calli lines demonstrated that the target gene, mostly with the low copy number, has been integrated into the cotton genome.

分类号: Q94

  • 相关文献

[1]Establishment of Agrobacterium tumefaciens-mediated transformation system for Phomopsis asparagi, the pathogen of asparagus stem blight. Yang, Ying-Qing,Lan, Bo,Jian, Yan-Li,Hu, Shui-Xiu,Chang, Dong-Dong,Zhang, Shun-Liang,Li, Xiang-Min,Jian, Yan-Li,Hu, Shui-Xiu,Chang, Dong-Dong. 2015

[2]Polyethylene glycol-mediated transformation of fused egfp-hph gene under the control of gpd promoter in Pleurotus eryngii. Yin, Yonggang,Liu, Yu,Wang, Shouxian,Zhao, Shuang,Geng, Xiaoli,Xu, Feng,Yin, Yonggang,Li, Ming,Jin, Haojie.

[3]Comparison of Transformation Efficiency of piggyBac Transposon among Three Different Silkworm Bombyx mori Strains. Zhong, Boxiong,Li, Jianying,Chen, Jin'e,Ye, Jian,Yu, Songdong.

[4]Plant regeneration via somatic embryogenesis in cotton. Bao-Hong Zhang,Fang Liu,Chang-Bing Yao. 2000

[5]Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Baohong Zhang,Qinglian Wang,Fang Liu,Kunbo Wang,Taylor P. Frazier. 2009

[6]Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Zhang Wei,Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xiao Le-le,Ye Xing-guo,Fan Rong. 2015

[7]Plant regeneration system from cotyledons-derived calluses cultures of Stylosanthes guianensis cv. 'Reyan 2'. Yuan, Xuejun,Liu, Guodao,Yuan, Xuejun,Wang, Zhiyong,Liao, Li,Wang, Zhiyong. 2011

[8]Plant regeneration from cotyledon of Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). He, Xiaoming,Xie, Dasen,Peng, Qingwu,Mu, Lixia. 2007

[9]Plant regeneration from cell suspension-derived protoplasts of Populus x beijingensis. Cai, Xiao,Kang, Xiang-Yang,Cai, Xiao. 2014

[10]Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum 'Supreme' and analysis of regenerants using flow cytometry. Zhao, Jietang,Henny, Richard J.,Chen, Jianjun,Cui, Jin,Liu, Juanxu,Liao, Feixiong,Chen, Jianjun. 2012

[11]Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Li, P,Hanania, U,Sahar, N,Mawassi, M,Gafny, R,Sela, I,Tanne, E,Perl, A.

[12]Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Sheng, Xiaoguang,Zhao, Zhenqing,Yu, Huifang,Wang, Jiansheng,Xiaohui, Zhang,Gu, Honghui. 2011

[13]High-Efficiency Plant Regeneration from Immature Inflorescence Derived Callus Cultures of Two Phenotypically Distinct Accessions of Centipedegrass (Eremochloa ophiuroides). Ma, Jingjing,Wang, Yi,Zong, Junqin,Zhang, Bing,Chen, Jingbo,Li, Dandan,Li, Ling,Guo, Hailin,Liu, Jianxiu,Li, Jianjian,She, Jianming. 2018

[14]High-frequency plantlet regeneration by somatic embryogenesis from mature zygotic embryos of onion. Wu, X.,Yang, F.,Piao, X. C.,Li, K. H.,Lian, M. L.,Dai, Y..

[15]Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Wang Shun-li,Ku, Seong Sub,Choi, Pil Son,Ye Xing-guo,He Cong-fen,Kwon, Suk Yoon. 2015

[16]The Influence of Plant Growth Regulators and Light Quality on Somatic Embryogenesis in China Rose (Rosa chinensis Jacq.). Chen, Ji-Ren,Wu, Lian,Hu, Bo-Wen,Yi, Xing,Deng, Zi-Niu,Xiong, Xing-Yao,Liu, Rong,Deng, Zi-Niu,Xiong, Xing-Yao,Xiong, Xing-Yao. 2014

[17]Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.). Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xu Hui-jun,Ye Xing-guo,Ren Xian,Li Jia-rui. 2014

[18]Improvement of isolated microspore culture of barley (Hordeum vulgare L.): the effect of floret co-culture. Lu, Ruiju,Wang, Yifei,Sun, Yuefang,Shan, Lili,Huang, Jianhua,Lu, Ruiju,Wang, Yifei,Sun, Yuefang,Shan, Lili,Huang, Jianhua,Lu, Ruiju,Chen, Peidu.

[19]Improvement of Plant Regeneration from Immature Embryos of Wheat Infected by Agrobacterium tumefaciens. Tao Li-li,Yin Gui-xiang,Du Li-pu,Shi Zheng-yuan,She Mao-yun,Xu Hui-jun,Ye Xing-guo. 2011

[20]EFFECTS OF SOIL DROUGHT STRESS ON PLANT REGENERATION EFFICIENCY AND ENDOGENOUS HORMONE LEVELS OF IMMATURE EMBRYOS IN WHEAT (&ITTRITICUM AESTIVUM&IT L.). Bie, Xiaomin,Wang, Ke,Liu, Chang,Du, Lipu,Mao, Xinguo,Ye, Xingguo,Bie, Xiaomin,Liu, Yongwei. 2017

作者其他论文 更多>>