Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China

文献类型: 外文期刊

第一作者: Zhang, Xiaowen

作者: Zhang, Xiaowen;Mao, Yuze;Zhuang, Zhimeng;Wang, Qingyin;Ye, Naihao;Wang, Hongxia;Liang, Chengwei

作者机构:

关键词: Enteromorpha prolifera;Green tide;Microscopic forms;Propagule bank;Regeneration;Somatic cells

期刊名称:JOURNAL OF APPLIED PHYCOLOGY ( 影响因子:3.215; 五年影响因子:3.612 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: For the last 2 years, vast accumulations of the unattached filamentous green alga, Enteromorpha prolifera, have occurred during summer along the coastal region of the Yellow Sea, China. However, algae do not seem to occur after the end of the fertile season. It has been suggested that banks of microscopic forms of the algae, primarily spores, function as a survival mechanism for this opportunistic alga. Therefore, in this study, field surveys and laboratory cultures were conducted to determine if somatic cells were serving as a propagule bank to enable the algae to survive through periods of unfavorable conditions. Laboratory experiments demonstrated that somatic regeneration was one of the most important approaches by which E. prolifera colonized and flourished in the study area. Indeed, at least 19.32% of somatic cells from the filamentous segments could survive for 2 months under various temperatures (0, 5, 10, 15, 20, and 30pC at an irradiance of 60pemol photons mpo sp#) and irradiances (darkness, 5 10, 15, 20 and 30pemol photons mpo sp# at a temperature of 20pC). Additionally, greater than 35.85% of the somatic cells could survive at 0pC or in darkness for 2 months, and no less than 15.99% of these cells resumed growth when the temperature and irradiance were adjusted to the normal levels (20pC and 60pemol photons mpo sp#). Furthermore, the results of field surveys revealed that viable E. prolifera was widespread in high quantities in the sediment of the Yellow Sea when the macroalga was absent. Taken together, the results of this study suggest that somatic cells may act as an overwintering stage for the annual spring bloom of E. prolifera. These findings should be useful in future studies conducted to behavior of somatic cells in green tide as well as in the management of future spring blooms of E. prolifera.

分类号: Q94

  • 相关文献

[1]ELEVATED ENDOGENOUS ISOPENTENYL ADENINE CONTENT IS CORRELATED WITH AN EXTREMELY SHOOTY RICE PHENOTYPE. ZHU, YX,QIN, RZ,SHAN, XY,CHEN, ZL.

[2]Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle. Gong, GC,Dai, YP,Fan, BL,Zhu, HB,Wang, HP,Wang, LL,Fang, CG,Wan, R,Liu, Y,Li, R,Li, N.

[3]Research note: Identity of the Qingdao algal bloom. Leliaert, Frederik,Verbruggen, Heroen,De Clerck, Olivier,Zhang, Xiaowen,Ye, Naihao,Malta, Erik-jan,Engelen, Aschwin H.,Mineur, Frederic.

[4]'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ye, Nai-hao,Zhang, Xiao-wen,Mao, Yu-ze,Xu, Dong,Zou, Jian,Zhuang, Zhi-meng,Wang, Qing-yin,Liang, Cheng-wei. 2011

[5]Identification and expression analysis of the gene lhcSR associated with adaptation to light and low temperature stress in the green tide forming alga Ulva prolifera. Zhang, Xiaowen,Zou, Jian,Ye, Naihao,Xu, Dong,Dong, Meitao,Wang, Wenqi,Mou, Shanli,Liang, Chengwei.

[6]Characterization of the LhcSR Gene Under Light and Temperature Stress in the Green Alga Ulva linza. Dong, Meitao,Wang, Wenqi,Dong, Meitao,Zhang, Xiaowen,Zhuang, Zhimeng,Zou, Jian,Ye, Naihao,Xu, Dong,Mou, Shanli,Liang, Chengwei.

[7]The green tide-forming macroalga Ulva linza outcompetes the red macroalga Gracilaria lemaneiformis via allelopathy and fast nutrients uptake. Gao, Zhengquan,Meng, Chunxiao,Xu, Dong,Zhang, Xiaowen,Zou, Jian,Zhuang, Zhimeng,Ye, Naihao,Wang, Yitao,Li, Demao.

[8]Effects of nitrogen and phosphate enrichment on the activity of nitrate reductase of Ulva prolifera in coastal zone. Zhu, Ming,Liu, Zhaopu,Zhu, Ming,Jin, Yue,Shao, Hongbo.

[9]High efficiency in vitro plant regeneration from epicotyl explants of Chinese peanut cultivars. Shan, Lei,Tang, Guiying,Xu, Pingli,Liu, Zhanji,Bi, Yuping,Shan, Lei,Tang, Guiying,Xu, Pingli,Liu, Zhanji,Bi, Yuping,Shan, Lei,Tang, Guiying,Xu, Pingli,Liu, Zhanji,Bi, Yuping.

[10]Relationships between endogenous hormonal content and direct somatic embryogenesis in Watermelon (Citrullus lanatus) cotyledons. Zhang, Hui Jun,Wang, Qing,Wang, Qing. 2015

[11]Preparation, purification and regeneration optimizing research of protoplasts from Rhizoctonia solani. Sun, Zhiguang,Qin, Peigang,Tang, Changqing,Fu, Rongtao,Liu, Yao,Li, Ping,Zheng, Aiping,Li, HaoJie,Feng, Haitao,Sun, Zhiguang,Qin, Peigang,Tang, Changqing,Fu, Rongtao,Liu, Yao,Li, Ping,Zheng, Aiping. 2012

[12]Disease-resistant transgenic adzuki bean plants obtained through an efficient transformation system. Chen, Huatao,Chen, Xin,Gu, Heping,Yuan, Xingxing,Zhang, Hongmei,Cui, Xiaoyan. 2012

[13]Regeneration and transformation of Crambe abyssinica. Qi, Weicong,Tinnenbroek-Capel, Iris E. M.,Schaart, Jan G.,Cheng, Jihua,Visser, Richard G. F.,Van Loo, Eibertus N.,Krens, Frans A.,Qi, Weicong,Huang, Bangquan,Cheng, Jihua. 2014

[14]Effects of iodine and light intensity on micropropagation of purple coneflower (Echinacea purpurea (L.) Moench). Chen Xiaolu,Li Dongliang,Chen Xiaolu,Yang Yuesheng. 2016

[15]In vitro organogenesis and plant regeneration from leaves of Actinidia eriantha Benth. cv White (kiwifruit). Wu, Y. J.,Xie, M.,Long, Q. J.. 2011

[16]High-efficiency regeneration of peanut (Arachis hypogaea L.) plants from leaf discs. Geng, Lili,Niu, Lihong,Shu, Changlong,Song, Fuping,Zhang, Jie,Huang, Dafang. 2011

[17]Genome Array on Differentially Expressed Genes of Skin Tissue in Cashmere Goat at Early Anagen of Cashmere Growth Cycle Using DNA Microarray. Di Jiang,Xu Xin-ming,Ainiwaer, Lazate,Zhang Yan-hua,Tian Ke-chuan,Yu Li-juan,Wu Wei-wei,Tulafu, Hanikezi,Fu Xue-feng,Yasen, Marzeya. 2014

[18]iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Coates, Dawn. 2016

[19]Regeenera of tartary buckwheat seedlings. Li, Hongmei,Li, Yunlong,Hu, Junjun,Bian, Junsheng,Shan, Fang. 2014

[20]The regenerating antler blastema: the derivative of stem cells resident in a pedicle stump. Li, Chunyi,Chu, Wenhui,Li, Chunyi,Chu, Wenhui. 2016

作者其他论文 更多>>