Unveiling geospatial heterogeneity in climate's impacts on wheat production to advance spatially-matched climate-adaptive agricultural management in the North China plain

文献类型: 外文期刊

第一作者: Han, Yang

作者: Han, Yang;Zhao, Yulong;Han, Yang;Zhao, Yulong;Wang, Jinglei

作者机构:

关键词: Climate change; Wheat yield; Geospatial heterogeneity; Climate-adaptive agriculture; North China Plain

期刊名称:JOURNAL OF ENVIRONMENTAL MANAGEMENT ( 影响因子:8.4; 五年影响因子:8.6 )

ISSN: 0301-4797

年卷期: 2024 年 369 卷

页码:

收录情况: SCI

摘要: Influence of climate change on the geospatial heterogeneity in agricultural production remains poorly understood. In this study, heterogeneity in climate's impacts on wheat production across the North China Plain (NCP) was explored by integrating APSIM model, process-based factor-control quantitative approach, and geostatistical analyses. The results indicated that increased precipitation and minimum temperature boosted yields, while elevated maximum temperature and reduced radiation exerted adverse effects. The most pronounced negative impact arose from the coupling variation between maximum temperature and radiation, contributing to yields' variations of -5.84% from 2000 to 2010 and -5.22% from 2010 to 2020. In last two decades, climate change has augmented the overall geospatial heterogeneity degree in wheat yields. The chief factor contributing to yields' heterogeneity was the maximum temperature during anthesis-maturation stage, explaining an average of 37.6% of yields' heterogeneity, followed by precipitation throughout the whole growth period and the anthesis-maturation stage, explaining 36.1% and 34.5% respectively. A reciprocal enhancement mechanism exists between factors in driving yields' heterogeneity. Wheat yields in the southwestern NCP benefited more from increased precipitation and minimum temperature. Between 2000 and 2010, yields in the central NCP (junctions of Henan, Hebei, and Shandong) experienced the most pronounced adverse impact from increased maximum temperature. However, by 2010-2020, significant adverse impact shifted to western NCP, expanding spatially. During 2010-2020, the geospatial scope of radiation's significant negative impact expanded compared to the preceding decade, particularly affecting the yields in central and eastern NCP. The identified geospatial heterogeneity pattern of climate's impacts can guide spatially-matched climate-adaptive management adjustments. For instance, intensifying the defense against high-temperature's impacts in northwestern Henan, southern Hebei, and western Shandong, while improving the adaptation to radiation reduction in the central and eastern NCP. The findings are expected to advance regional-scale climate-smart agricultural development.

分类号:

  • 相关文献
作者其他论文 更多>>