Molecular mechanisms of drought resistance using genome-wide association mapping in maize (Zea mays L.)

文献类型: 外文期刊

第一作者: Zhang, Ningning

作者: Zhang, Ningning;Liu, Binbin;Ye, Fan;Zhang, Xinghua;Xu, Shutu;Xue, Jiquan;Chang, Jianzhong;Zhou, Yuqian;Wang, Yejian;Zhang, Wenjie;Zhang, Wenjie

作者机构:

关键词: Maize; Genome-wide association studies; Drought resistance index; Candidate genes

期刊名称:BMC PLANT BIOLOGY ( 影响因子:5.3; 五年影响因子:5.9 )

ISSN: 1471-2229

年卷期: 2023 年 23 卷 1 期

页码:

收录情况: SCI

摘要: Background Drought is a critical abiotic stress that influences maize yield and reduces grain yield when it occurs at the flowering or filling stage. To dissect the genetic architecture of grain yield under drought stress (DS), a genome-wide association analysis was conducted in a maize population composed of diverse inbred lines from five locations under well-watered and DS conditions at flowering in 2019 and 2020.Results Using a fixed and random model circulating probability unification model, a total of 147 loci associated with grain yield or the drought resistance index (DRI) were identified, of which 54 loci were associated with a DRI with an average phenotypic variation explanation of 4.03%. Further, 10 of these loci explained more than 10% of the phenotypic variation. By integrating two public transcriptome datasets, 22 differentially expressed genes were considered as candidate genes, including the cloned gene ZmNAC49, which responds to drought by regulating stomatal density. Enrichment and protein interaction network showed that signaling pathways responded to drought resistance, including jasmonic acid and salicylic acid, mitogen-activated protein kinase, and abscisic acid-activated. Additionally, several transcription factors involved in DS were identified, including basic leucine zipper (GRMZM2G370026), NAC (GRMZM2G347043), and ethylene-responsive element binding protein (GRMZM2G169654).Conclusions In this study, we nominated several genes as candidate genes for drought resistance by intergrating association maping and transcription analysis. These results provide valuable information for understanding the genetic basis of drought tolerance at the mature stage and for designing drought-tolerant maize breeding.

分类号:

  • 相关文献
作者其他论文 更多>>