Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutum
文献类型: 外文期刊
第一作者: Zhang, Guoli
作者: Zhang, Guoli;Qu, Yanying;Chen, Quanjia;Zhang, Guoli;Zhao, Zengqiang;Ma, Panpan;Sun, Guoqing
作者机构:
期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.996; 五年影响因子:5.516 )
ISSN: 2045-2322
年卷期: 2021 年 11 卷 1 期
页码:
收录情况: SCI
摘要: Worldwide, Verticillium wilt is among the major harmful diseases in cotton production, causing substantial reduction in yields. While this disease has been extensively researched at the molecular level of the pathogen, the molecular basis of V. dahliae host response association is yet to be thoroughly investigated. In this study, RNA-seq analysis was carried out on V. dahliae infected two Gossypium hirsutum L. cultivars, Xinluzao-36 (susceptible) and Zhongzhimian-2 (disease resistant) for 0 h, 24 h, 72 h and 120 h time intervals. Statistical analysis revealed that V. dahliae infection elicited differentially expressed gene responses in the two cotton varieties, but more intensely in the susceptible cultivar than in the resistant cultivars. Data analysis revealed 4241 differentially expressed genes (DEGs) in the LT variety across the three treatment timepoints whereas 7657 in differentially expressed genes (DEGs) in the Vd592 variety across the three treatment timepoints. Six genes were randomly selected for qPCR validation of the RNA-Seq data. Numerous genes encompassed in disease resistance and defense mechanisms were identified. Further, RNA-Seq dataset was utilized in construction of the weighted gene co-expression network and 11 hub genes were identified, that encode for different proteins associated with lignin and immune response, Auxin response factor, cell wall and vascular development, microtubule, Ascorbate transporter, Serine/threonine kinase and Immunity and drought were identified. This significant research will aid in advancing crucial knowledge on virus-host interactions and identify key genes intricate in G. hirsutum L. resistance to V. dahliae infection.
分类号:
- 相关文献
作者其他论文 更多>>
-
Drought Priming May Enhance the Tolerance of Cotton Seedlings to Subsequent Drought Stress
作者:Tian, Yousheng;Wang, Zhijun;Ma, Panpan;Zhao, Zengqiang;Xie, Zongming;Tian, Yousheng
关键词:Cotton; Drought priming; Antioxidative systems; Photosynthesis
-
Combined genome and transcriptome analysis of elite fiber quality in Gossypium barbadense
作者:Song, Xiaohui;Zhu, Guozhong;Su, Xiujuan;Yu, Yujia;Duan, Yujia;Wang, Haitang;Shang, Xiaoguang;Guo, Wangzhen;Song, Xiaohui;Zhu, Guozhong;Su, Xiujuan;Yu, Yujia;Duan, Yujia;Wang, Haitang;Shang, Xiaoguang;Guo, Wangzhen;Su, Xiujuan;Chen, Quanjia;Xu, Haijiang
关键词:
-
Genome-Wide and Expression Pattern Analysis of the HIT4 Gene Family Uncovers the Involvement of GHHIT4_4 in Response to Verticillium Wilt in Gossypium hirsutum
作者:Zhang, Guoli;Wang, Zhijun;Zhu, Jincheng;Zhang, Guoli;Jiao, Yang;Chen, Quanjia;Zhang, Guoli;Jiao, Yang;Zhao, Zengqiang;Wang, Zhijun;Zhu, Jincheng;Jiao, Yang;Zhao, Zengqiang;Lv, Ning;Sun, Guoqing
关键词:G. hirsutum; HIT4; Verticillium wilt; phylogenetic analysis; multiple synteny; expression pattern; WGCNA; VIGS; transgenic tobacco
-
Functional Analysis of the GhIQD1 Gene in Cotton Resistance to Verticillium Wilt
作者:Xu, Jianglin;Wang, Yongqiang;Chen, Quanjia;Zheng, Kai;Xu, Jianglin;Zhou, Ting;Wang, Yongqiang;Yang, Yejun;Sun, Guoqing;Zhou, Ting;Yang, Yejun;Pu, Yuanchun
关键词:cotton; chlorosis; plant hormones; calmodulin-binding protein
-
InDel variations and gene expression analysis related to Fusarium wilt resistance in Gossypium barbadense
作者:Liu, Baojun;Qu, Yanying;Gu, Aixing;Han, Wanli;Yu, Yu;Wang, Xuwen;Bai, Jianyu
关键词:
-
Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment
作者:Ma, Panpan;Zhu, Jianbo;Ma, Panpan;Li, Jilian;Sun, Guoqing;Sun, Guoqing
关键词:halophyte; Suaeda dendroides; salt stress; transcriptome; adaptive mechanism
-
Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Cold Shock Protein (CSP) Gene Family in Cotton Hypothermia Stress
作者:Yang, Yejun;Zhou, Ting;Qu, Yunfang;Yang, Yejun;Zhou, Ting;Xu, Jianglin;Wang, Yongqiang;Sun, Guoqing;Xu, Jianglin;Wang, Yongqiang;Pu, Yuanchun
关键词:cotton; cold shock domain protein; abiotic stress; cold acclimation; expression analysis