A Distinct Tobamovirus Associated With Trichosanthes kirilowii Mottle Mosaic Disease
文献类型: 外文期刊
第一作者: Chen, Cheng
作者: Chen, Cheng;Du, Min;Peng, Deliang;Yang, Xiuling;Zhou, Xueping;Chen, Cheng;Li, Wulun;Xu, Jingfeng;Zhou, Xueping
作者机构:
关键词: Trichosanthes mottle mosaic virus; Cucurbitaceae; infectious clone; infectivity; mechanical transmission
期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:6.064; 五年影响因子:6.843 )
ISSN:
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: Trichosanthes kirilowii is one of the most important perennial herbaceous vines that have been used in traditional Chinese medicine. In this study, a novel RNA virus was discovered in T. kirilowii plants showing leaf mottling and mosaic symptoms. The complete genome of this virus is 6,524 nucleotides long and encodes four open reading frames which are arranged in a manner typical of tobamoviruses. Phylogenetic analysis based on the complete genome sequence revealed that the virus was clustered into a branch with the tobamoviruses whose natural host are plants belonging to the family Cucurbitaceae. A full-length infectious cDNA clone was then constructed and demonstrated to establish a systemic infection with typical symptoms in Nicotiana benthamiana, T. kirilowii, and five other cucurbitaceous crops including Cucumis melo, C. lanatus, C. sativus, Luffa aegyptiaca, and Cucurbita pepo via agrobacterium-mediated infectivity assays. Further experiments provided evidence that the rod-shaped viral particles derived from the infectious clone could be mechanically transmitted and reproduce indistinguishable symptoms in the tested plants. Taken together, the mottle mosaic disease of T. kirilowii is caused by a distinct tobamovirus, for which the name Trichosanthes mottle mosaic virus (TrMMV) is proposed. As the infectious cDNA clone of TrMMV could also infect five other cucurbit crops, this distinct tobamovirus could be a potential threat to other cucurbitaceous crops.
分类号:
- 相关文献
作者其他论文 更多>>
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola
作者:Liu, Jing;Zhang, Jiaqian;Wei, Ying;Su, Wen;Li, Wei;Wang, Bing;Dai, Liangying;Liu, Jing;Gheysen, Godelieve;Zhang, Jiaqian;Wei, Ying;Peng, Deliang;Peng, Huan;Peng, Huan;Dai, Liangying
关键词:calmodulin-like protein; calreticulin; effector; Meloidogyne graminicola; OsHMGB1; plant defense
-
Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms
作者:Yu, Wenjuan;Xu, Zhi;Zhong, Xuelian;Ji, Hongli;Peng, Yunliang;He, Jiachun;Lai, Fengxiang;Fu, Qiang;Peng, Yunliang;Wu, Jianxiang;Zhou, Xueping;Zhang, Mei;Zhou, Xueping
关键词:Nilaparvata lugens; resistance; rice germplasm; Sogatella furcifera; Southern rice black-streaked dwarf virus
-
Identification of Meloidogyne Species on Traditional Chinese Medicine Plants in the Qinling Mountain Area of China and Their Aggressiveness to Different Medicinal Herbs
作者:Pan, Song;Wei, Peiyao;Chen, Zhijie;Liu, Chen;Hong, Bo;Zhang, Feng;Li, Yingmei;Li, Yu;Peng, Deliang;Wang, Li
关键词:host status; M. hapla; M. incognita; Qinling mountain area; reproduction factor; root-knot nematodes; traditional Chinese medicine
-
A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants
作者:Chen, Yalin;Jia, Mingxuan;Ge, Linhao;Li, Zhaolei;He, Hao;Zhou, Xueping;Li, Fangfang;Zhou, Xueping
关键词:autophagic degradation; nonsense mediated RNA decay; SMG7; UPF3; virus restriction
-
The C4 Protein of TbLCYnV Promotes SnRK1 β2 Degradation Via the Autophagy Pathway to Enhance Viral Infection in N. benthamiana
作者:Li, Xinquan;Zhao, Min;Yang, Wanyi;Zhou, Xueping;Xie, Yan;Zhou, Xueping
关键词:SnRK1; NbSnRK1 beta 2; TbLCYnV C4; interaction; degradation; autophagy pathway