Contributions of Different N Sources to Crop N Nutrition in a Chinese Rice Field

文献类型: 外文期刊

第一作者: Chen Yi

作者: Chen Yi;Tang Xu;Yang Sheng-Mao;Wu Chun-Yan;Wang Jia-Yu

作者机构:

关键词: growing season;soil organic matter;crop residue incorporation

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: N availability is one of the most important factors limiting crop yield enhancement. The recovery of applications of N-15-labeled fertilizer and crop residues in a rice-wheat cropping system was determined for up to 6 consecutive growing seasons. The crop residues from the previous season were either incorporated or removed as two different treatments. Our results showed that 16.55%-17.79% (17.17% on average) of the fertilizer N was recovered in the crop during the first growing season, suggesting that more than 80% of crop N was not directly from the N fertilizer. When N-15-labeled residues were applied, 12.01% was recovered in the crop in the first growing season. The average recoveries of fertilizer N and crop residue N in the soil after the first growing season were 33.46% and 85.64%, respectively. N from soil organic matter contributed approximately 83% of the N in the crop when N-15 fertilizer was applied or 88% when crop residues were applied. There was a larger difference in the total N-15 recovery in plant and soil between N applications in the forms of fertilizer and crop residues. Incorporation of crop residues following the N-15 fertilizer application did not significantly promote N-15 recovery in the crop or soil. On average, only additional 1.94% of N for the fertilizer-applied field or 5.97% of N for the crop residue-applied field was recovered by the crops during the 2nd and 3rd growing seasons. The total recoveries of N-15 in crop and soil were approximately 64.38% for the fertilizer-applied field after 6 growing seasons and 79.11% for the crop residue-applied field after 5 growing seasons. Although fertilizer N appeared to be more readily available to crops than crop residue N, crop residue N replenished soil N pool, especially N from soil organic matter, much more than fertilizer N. Therefore, crop residue N was a better source for sustaining soil organic matter. Our results suggested that the long-term effect of fertilizer or crop residues on N recovery were different in the crop and soil. However, there was little difference between the practices of crop residue incorporation and residue removal following the N fertilizer application.

分类号: S15

  • 相关文献

[1]Cooperation-88: A High Yielding, Multi-Purpose, Late Blight Resistant Cultivar Growing in Southwest China. VanderZaag, Peter,Li, Canhui,Li, Canhui,Wang, Jun,Dao Huy Chien,Chujoy, Enrique,Song, Bofu.

[2]Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and their relationships with climate factors. Gao, Tian,Zheng, Xiao,Gao, Tian,Xu, Bin,Yang, Xiuchun,Ma, Hailong,Yu, Haida,Yu, Qiangyi,Gao, Tian,Deng, Songqiu,Liu, Yuechen,Jin, Yunxiang,Li, Jinya. 2017

[3]Observed Climatic Variations in the Growing Season of Field Crops in Northeast China from 1992 to 2012. Liu Yang,Jiang Wen-lai,Xiao Bi-lin,Liu Yang,Jiang Wen-lai,Xiao Bi-lin,Lei Bo. 2014

[4]Response of Potato Tuber Number and Spatial Distribution to Plant Density in Different Growing Seasons in Southwest China. Wan, Nian-Xin,Zhong, Lei,Zhou, Shao-Meng,Yuan, Ji-Chao,Wang, Liang-Jun,He, Wei. 2016

[5]Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils. Luo, Jia,Ran, Wei,Hu, Jiang,Yang, Xingming,Xu, Yangchun,Shen, Qirong,Luo, Jia.

[6]Comparisons of Yield, Water Use Efficiency, and Soil Microbial Biomass as Affected by the System of Rice Intensification. Zhao, Limei,Wu, Lianghuan,Animesh, Sarkar,Zhao, Limei,Wu, Lianghuan,Animesh, Sarkar,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[7]Labile soil organic matter fractions as influenced by non-flooded mulching cultivation and cropping season in rice-wheat rotation. Fan, Mingsheng,Li, Xiaolin,Lu, Shihua,Tian, Jing,Kuzyakov, Yakov. 2013

[8]Effect of Spectral Resolution on Black Soil Organic Matter Content Predicting Model Based on Laboratory Reflectance. Liu Huan-jun,Wu Bing-fang,Liu Huan-jun,Zhao Chun-jiang,Zhao Yun-Sheng. 2012

[9]The inversion model of soil organic matter of cultivated land based on hyperspectral technology. Gu, Xiaohe,Wang, Yancang,Song, Xiaoyu,Xu, Xingang. 2015

[10]Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Hu, Kelin,Huang, Feng,Li, Baoguo,Wang, Shuying,Li, Hong,Li, Hong. 2014

[11]Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat -maize intercropping system: A model approach. Zhang, Xubo,Xu, Minggang,Sun, Nan,Wang, Boren,Zhang, Xubo,Wu, Lianhai,Liu, Jian.

[12]Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Wang, J.,Lu, C.,Xu, M.,Zhang, W.,Zhu, P.,Peng, C.,Huang, S.,Chen, X.,Wu, L.. 2013

[13]Remote sensing of soil organic matter of farmland with hyperspectral image. Gu, Xiaohe,Wang, Lei,Yang, Guijun,Zhang, Liyan. 2017

[14]A New Method to Decline the SWC Effect on the Accuracy for Monitoring SOM with Hyperspectral Technology. Wang Chao,Feng Mei-chen,Yang Wu-de,Xiao Lu-jie,Li Guang-xin,Zhao Jia-jia,Ren Peng,Li Guang-xin. 2015

[15]Long-term effects of returning wheat straw to croplands on soil compaction and nutrient availability under conventional tillage. Guo, Z.,Wang, D. Z.,Guo, Z.,Wang, D. Z.. 2013

[16]Effect of conservation farming practices on soil organic matter and stratification in a mono-cropping system of Northern China. Zhang, Zhiqiang,Qiang, Hongjun,He, Jin,Li, Hongwen,Wang, Qingjie,McHugh, Allen D.,Lu, Zhanyuan.

[17]Manure substitution of mineral fertilizers increased functional stability through changing structure and physiology of microbial communities. Yue, Xianlu,Shi, Andong,Yao, Shuihong,Zhang, Bin,Zhang, Jiguang.

[18]Hyperspectral extraction of soil organic matter content based on principal component regression. Yanli, Lu,Youlu, Bai,Lipng, Yang,Hongjuan, Wang.

[19]Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Wang, Yidong,Wang, Zhong-Liang,Hu, Ning,Lou, Yilai,Ge, Tida,Kuzyakov, Yakov,Li, Zhongfang,Tang, Zheng,Chen, Yi,Wu, Chunyan.

[20]Modeling Soil Organic Matter Dynamics Under Intensive Cropping Systems on the Huang-Huai-Hai Plain of China. Lei Hong-Jun,Li Bao-Guo,Bai You-Lu,Huang Yuan-Fang,Lu Yi-Zhong,Li Gui-Tong.

作者其他论文 更多>>