Contributions of Different N Sources to Crop N Nutrition in a Chinese Rice Field

文献类型: 外文期刊

第一作者: Chen Yi

作者: Chen Yi;Tang Xu;Yang Sheng-Mao;Wu Chun-Yan;Wang Jia-Yu

作者机构:

关键词: growing season;soil organic matter;crop residue incorporation

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: N availability is one of the most important factors limiting crop yield enhancement. The recovery of applications of N-15-labeled fertilizer and crop residues in a rice-wheat cropping system was determined for up to 6 consecutive growing seasons. The crop residues from the previous season were either incorporated or removed as two different treatments. Our results showed that 16.55%-17.79% (17.17% on average) of the fertilizer N was recovered in the crop during the first growing season, suggesting that more than 80% of crop N was not directly from the N fertilizer. When N-15-labeled residues were applied, 12.01% was recovered in the crop in the first growing season. The average recoveries of fertilizer N and crop residue N in the soil after the first growing season were 33.46% and 85.64%, respectively. N from soil organic matter contributed approximately 83% of the N in the crop when N-15 fertilizer was applied or 88% when crop residues were applied. There was a larger difference in the total N-15 recovery in plant and soil between N applications in the forms of fertilizer and crop residues. Incorporation of crop residues following the N-15 fertilizer application did not significantly promote N-15 recovery in the crop or soil. On average, only additional 1.94% of N for the fertilizer-applied field or 5.97% of N for the crop residue-applied field was recovered by the crops during the 2nd and 3rd growing seasons. The total recoveries of N-15 in crop and soil were approximately 64.38% for the fertilizer-applied field after 6 growing seasons and 79.11% for the crop residue-applied field after 5 growing seasons. Although fertilizer N appeared to be more readily available to crops than crop residue N, crop residue N replenished soil N pool, especially N from soil organic matter, much more than fertilizer N. Therefore, crop residue N was a better source for sustaining soil organic matter. Our results suggested that the long-term effect of fertilizer or crop residues on N recovery were different in the crop and soil. However, there was little difference between the practices of crop residue incorporation and residue removal following the N fertilizer application.

分类号: S15

  • 相关文献

[1]Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils. Luo, Jia,Ran, Wei,Hu, Jiang,Yang, Xingming,Xu, Yangchun,Shen, Qirong,Luo, Jia.

[2]Cooperation-88: A High Yielding, Multi-Purpose, Late Blight Resistant Cultivar Growing in Southwest China. VanderZaag, Peter,Li, Canhui,Li, Canhui,Wang, Jun,Dao Huy Chien,Chujoy, Enrique,Song, Bofu.

[3]Observed Climatic Variations in the Growing Season of Field Crops in Northeast China from 1992 to 2012. Liu Yang,Jiang Wen-lai,Xiao Bi-lin,Liu Yang,Jiang Wen-lai,Xiao Bi-lin,Lei Bo. 2014

[4]Response of Potato Tuber Number and Spatial Distribution to Plant Density in Different Growing Seasons in Southwest China. Wan, Nian-Xin,Zhong, Lei,Zhou, Shao-Meng,Yuan, Ji-Chao,Wang, Liang-Jun,He, Wei. 2016

[5]Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and their relationships with climate factors. Gao, Tian,Zheng, Xiao,Gao, Tian,Xu, Bin,Yang, Xiuchun,Ma, Hailong,Yu, Haida,Yu, Qiangyi,Gao, Tian,Deng, Songqiu,Liu, Yuechen,Jin, Yunxiang,Li, Jinya. 2017

[6]Comparisons of Yield, Water Use Efficiency, and Soil Microbial Biomass as Affected by the System of Rice Intensification. Zhao, Limei,Wu, Lianghuan,Animesh, Sarkar,Zhao, Limei,Wu, Lianghuan,Animesh, Sarkar,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[7]Labile soil organic matter fractions as influenced by non-flooded mulching cultivation and cropping season in rice-wheat rotation. Fan, Mingsheng,Li, Xiaolin,Lu, Shihua,Tian, Jing,Kuzyakov, Yakov. 2013

[8]Can Assessing for Potential Contribution of Soil Organic and Inorganic Components for Butachlor Sorption Be Improved?. He, Yan,Zhang, Jian,Wang, Haizhen,Shi, Jiachun,Xu, Jianming,Liu, Zhongzhen.

[9]Topographic Indices and Yield Variability in a Rolling Landscape of Western Canada. Chi Bao-Liang,Bing Cheng-Si,Walley, F.,Yates, T..

[10]Effects of controlled traffic no-till system on soil chemical properties and crop yield in annual double-cropping area of the North China Plain. Lu, Caiyun,Li, Hongwen,He, Jin,Wang, Qingjie,Sarker, Khokan Kumer,Li, Wenying,Rasaily, Rabi G.,Li, Hui,Lu, Caiyun,Lu, Zhanyuan,Chen, Guangnan.

[11]Modeling Soil Organic Matter Dynamics Under Intensive Cropping Systems on the Huang-Huai-Hai Plain of China. Lei Hong-Jun,Li Bao-Guo,Bai You-Lu,Huang Yuan-Fang,Lu Yi-Zhong,Li Gui-Tong.

[12]Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch. Guo, Zhibin,Wan, Shuixia,Hua, Keke,Wang, Daozhong,He, Chuanlong,Guo, Xisheng,Liu, Hui,Guo, Zhibin,Guo, Zhibin,Guo, Zhibin,Wan, Shuixia,Hua, Keke,Wang, Daozhong,He, Chuanlong,Guo, Xisheng,Jiang, Chaoqiang.

[13]Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Dou, Xiaolin,Shu, Xiao,Zhang, Quanfa,Cheng, Xiaoli,Dou, Xiaolin,Xu, Xia.

[14]Dynamics of soil carbon to nitrogen ratio changes under long-term fertilizer addition in wheat-corn double cropping systems of China. Wang, X. J.,Cong, R. H.,Xu, M. G.,Zhang, W. J.,Xie, L. J.,Wang, B. R.,Cong, R. H.,Wang, X. J.,Huang, S. M..

[15]Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Wang, Peng,Wang, Yin,Wang, Peng,Wu, Qiang Sheng.

[16]Effect of conservation farming practices on soil organic matter and stratification in a mono-cropping system of Northern China. Zhang, Zhiqiang,Qiang, Hongjun,He, Jin,Li, Hongwen,Wang, Qingjie,McHugh, Allen D.,Lu, Zhanyuan.

[17]Long-term fertilization impacts on corn yields and soil organic matter on a clay-loam soil in Northeast China. Zhu, Ping,Ren, Jun,Wang, Lichun,Zhang, Xiaoping,Yang, Xueming,MacTavish, Don.

[18]Impacts of vegetation restoration strategies on soil organic carbon and nitrogen dynamics in a karst area, southwest China. Chen, Hao,Peng, Wanxia,Song, Tongqing,Wang, Kelin,Li, Dejun,He, Tieguang,Xiao, Kongcao,Chen, Hao,Peng, Wanxia,Song, Tongqing,Wang, Kelin,Li, Dejun.

[19]Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Wang, Zhi-gang,Li, Xiao-fei,Jin, Xin,Christie, Peter,Li, Long,Bao, Xing-guo,Zhao, Jian-hua,Sun, Jian-hao.

[20]Temporal Dynamics Of Iron-rich, Tropical Soil Organic Carbon Pools After Land-use Change From Forest To Sugarcane. Deng, Wangang,Wu, Weidong,Deng, Wangang,Wu, Weidong,Wang, Hailong,Wang, Hailong,Kimberley, Mark O.,Luo, Wei.

作者其他论文 更多>>