SlMYB7, an AtMYB4-Like R2R3-MYB Transcription Factor, Inhibits Anthocyanin Accumulation in Solanum lycopersicum Fruits
文献类型: 外文期刊
第一作者: Zhang, Li
作者: Zhang, Li;Duan, Zedi;Ma, Shuang;Sun, Minghui;Xiao, Yunhong;Ni, Na;Chen, Lijing;Sun, Yibo;Ma, Shuang;Sun, Shaokun;Irfan, Muhammad
作者机构:
关键词: tomato; anthocyanin; SlMYB7; MBW complex; negative regulation
期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.1; 五年影响因子:6.3 )
ISSN: 0021-8561
年卷期: 2023 年 71 卷 48 期
页码:
收录情况: SCI
摘要: Tomato is a horticultural crop with an incomplete flavonoid metabolic pathway that does not typically accumulate anthocyanins in the fruit. In recent years, intensive studies of the loci Anthocyanin fruit (Aft) and atroviolacium (atv) have clarified the functions of positive regulators (R2R3-MYBs) and a negative regulator (CPC-MYB) in anthocyanin biosynthesis in the fruits. However, little is known about the R2R3-MYB repressors. Here, we used transient overexpression analysis to show that SlMYB7, a subgroup 4 AtMYB4-like R2R3-MYB, inhibited anthocyanin accumulation and reduced expression of anthocyanin synthase genes in the 'black pearl' tomato fruits, which usually accumulate high concentrations of anthocyanins. These findings revealed that SlMYB7 served as a repressor of anthocyanin production. Furthermore, SlMYB7 actively repressed SlANS expression by binding its promoter and passively inhibited anthocyanin synthesis by interacting with the basic helix-loop-helix (bHLH) proteins SlJAF13 and SlAN1, which are involved in the formation of MBW complexes. Thus, SlMYB7 and the MBW complex may coregulate the anthocyanin content of 'black pearl' tomato fruits via a negative feedback loop. These findings provide a theoretical basis for the future enhancement of tomato anthocyanin contents through genetic manipulation of the biosynthetic regulatory network.
分类号:
- 相关文献
作者其他论文 更多>>
-
Short-term high-light intensity and low temperature improve the quality and flavor of lettuce grown in plant factory
作者:Zhang, Li;Huang, Tao;Jiang, Hui;Song, Bo;Duan, Zhiling;Li, Yuejian;Yang, Xiao;Yang, Qichang;Zhang, Qiqi;Song, Hongyuan;Escalona Contreras, Victor Hugo
关键词:light quality; temperature; nutritional value; bitterness; leafy vegetables
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales
作者:Zou, Zhi;Zhang, Li;Zhao, Yongguo;Zhang, Li;Zhao, Yongguo
关键词:whole-genome duplication; gene expansion; evolutionary analysis; synteny analysis; orthogroup; divergence
-
N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1
作者:Yu, Mengmeng;Zhang, Yao;Zhang, Li;Wang, Suyan;Liu, Yongzhen;Xu, Zhuangzhuang;Liu, Peng;Chen, Yuntong;Guo, Ru;Meng, Lingzhai;Zhang, Tao;Fan, Wenrui;Qi, Xiaole;Gao, Li;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation
-
OASL suppresses infectious bursal disease virus replication by targeting VP2 for degrading through the autophagy pathway
作者:Wang, Suyan;Xu, Zhuangzhuang;Liu, Yongzhen;Yu, Mengmeng;Zhang, Tao;Liu, Peng;Qi, Xiaole;Chen, Yuntong;Meng, Lingzhai;Guo, Ru;Zhang, Li;Fan, Wenrui;Gao, Li;Duan, Yulu;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:IBDV; OASL; VP2; degradation; autophagy
-
Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli
作者:Zhang, Li;Meng, Sufang;Liu, Yumei;Han, Fengqing;Xu, Tiemin;Li, Zhansheng;Zhang, Li;Xu, Tiemin;Zhao, Zhiwei;Li, Zhansheng
关键词:broccoli; advances; gene editing; CRISPR-Cas9; Agrobacterium-mediated transformation