Rapid and accurate identification of Gastrodia elata Blume species based on FTIR and NIR spectroscopy combined with chemometric methods
文献类型: 外文期刊
第一作者: Li, Guangyao
作者: Li, Guangyao;Li, Jieqing;Li, Guangyao;Wang, Yuanzhong;Liu, Honggao
作者机构:
关键词: Gastrodia elata Blume; Species; FTIR; NIR; Machine learning; Deep learning
期刊名称:TALANTA ( 影响因子:6.1; 五年影响因子:5.5 )
ISSN: 0039-9140
年卷期: 2025 年 281 卷
页码:
收录情况: SCI
摘要: Different varieties of Gastrodia elata Blume (G. elata Bl.) have different qualities and different contents of active ingredients, such as polysaccharide and gastrodin, and it is generally believed that the higher the active ingredients, the better the quality of G. elata Bl. and the stronger the medicinal effects. Therefore, effective identification of G. elata Bl. species is crucial and has important theoretical and practical significance. In this study, first unsupervised PCA and t-SNE are established for data visualisation, follow by traditional machine learning (PLS-DA, OPLS-DA and SVM) models and deep learning (ResNet) models were established based on the fourier transform infrared (FTIR) and near infrared (NIR) spectra data of three G. elata Bl. species. The results show that PLS-DA, OPLS-DA and SVM models require complex preprocessing of spectral data to build stable and reliable models. Compared with traditional machine learning models, ResNet models do not require complex spectral preprocessing, and the training and test sets of ResNet models built based on raw NIR and low-level data fusion (FTIR + NIR) spectra reach 100 % accuracy, the external validation set based on low-level data fusion reaches 100 % accuracy, and the external validation set based on NIR has only one sample classification error and no overfitting.
分类号:
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Nucleoside compounds; Climatic factors; Two-dimensional correlation spectroscopy; Residual neural networks
-
Predicting the suitable habitat distribution of Polygonatum kingianum under current and future climate scenarios in southwestern Yunnan, China
作者:Hu, Xiaoyan;Yang, Shaobing;Li, Zhimin;Wang, Yuanzhong;Hu, Xiaoyan
关键词:Polygonatum kingianum; Maximum entropy model; Species distribution; Suitable habitat; Geographical traceability
-
Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy
作者:Han, Jiaqi;Hu, Qiang;Wang, Yuanzhong
关键词:Spectral analysis; Data fusion; Two-dimensional correlation spectroscopy; The residual convolutional neural network; Dendrobium officinale Kimura & Migo
-
Classification of bolete species and drying temperature using LC-MS and infrared spectroscopy and simultaneous prediction of their major compounds using chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Organic acids; Postharvest drying; Species identification; Quality assessment
-
Infrared spectroscopy combined with machine learning: A fast method for origin tracing and dry matter content prediction of Dendrobium officinale Kimura et Migo
作者:Feng, Yangna;Feng, Yangna;Yang, Shaobing;Wang, Yuanzhong
关键词:FT-NIR; ATR-FTIR; Dendrobium officinal; Prediction; Origin tracing
-
Prediction of pyrazines and identification of flavor intensity in boletus bainiugan at different drying temperatures based on feature variables
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; Fourier transform near infrared spectroscopy; Attenuated total reflectance Fourier transform; infrared spectroscopy; Data fusion; Volatile compounds