Screening and Expression Analysis of POD Gene in POD-H2O2 Pathway on Bud Dormancy of Pear (Pyrus pyrifolia)
文献类型: 外文期刊
第一作者: Xiang, Xuwen
作者: Xiang, Xuwen;Song, Keke;Li, Yinyin;Zhang, Chenyu;Zhou, Ruiqi;Feng, Yu;You, Jingnan;Li, Yongyu;Xiang, Xuwen;Song, Keke;Li, Yinyin;Zhang, Chenyu;Zhou, Ruiqi;Feng, Yu;You, Jingnan;Li, Yongyu;Wu, Jingdong;Zhang, Yanhui;Jiang, Cuicui
作者机构:
关键词: endodormancy; overexpression; H2O2; POD genes
期刊名称:FORESTS ( 影响因子:2.9; 五年影响因子:3.0 )
ISSN:
年卷期: 2024 年 15 卷 3 期
页码:
收录情况: SCI
摘要: Bud endodormancy represents a pivotal and intricate biological process influenced by both genetic and epigenetic factors, the exact mechanism of which remains elusive. Hydrogen peroxide (H2O2) functions as a signalling molecule in the regulation of dormancy, with peroxidase (POD) playing a crucial role in governing H2O2 levels. Our prior transcriptomic and metabolomic investigations into diverse pear dormancy phases posited that POD predominantly oversees pear bud dormancy. In this study, we utilised qRT-PCR to screen the most significantly expressed gene, Pyrus pyrifolia POD4-like (PpPOD4-like), from seven POD genes. Subsequently, H2O2 test kits, overexpression methods, and subcellular localisation techniques were employed to assess changes in H2O2 content, POD activity, PpPOD4-like expression, and its cellular positioning during pear bud dormancy. Subcellular localisation experiments revealed that PpPOD4-like is situated on the cell membranes. Notably, H2O2 content exhibited a rapid increase during endodormancy and decreased swiftly after ecodormancy. The fluctuation pattern of POD activity aligned with that of H2O2 content. Additionally, PpPOD4-like expression was markedly upregulated, displaying an overall upward trajectory. Our findings indicate that PpPOD4-like modulates H2O2 levels by regulating POD activity, thereby actively participating in the intricate regulation of pear dormancy processes.
分类号:
- 相关文献
作者其他论文 更多>>
-
Green Manuring Enhances Soil Multifunctionality in Tobacco Field in Southwest China
作者:Feng, Yu;Chen, Hua;Fu, Libo;Yin, Mei;Wang, Zhiyuan;Li, Yongmei;Cao, Weidong
关键词:soil multifunctionality; green manure; smooth vetch; common vetch; networks; tobacco field
-
Oil-Coated Ammonium Sulfate Improves Maize Nutrient Uptake and Regulates Nitrogen Leaching Rates in Sandy Soil
作者:Yan, Shuangdui;Dong, Xinyu;Jiang, Huishu;Liu, Yu;Han, Ying;Guo, Tanwen;Zhang, Yanhui;Li, Juan;Yan, Qiuyan
关键词:ammonium sulfate; nitrogen leaching rate; nitrogen uptake; maize yield
-
Strain-level Identification of Brucella melitensis Reference Strain 63/9 using Multiplex PCR Method by Targeting BMEA_B0162 and BMEA_A1238
作者:Zhang, Ge;Shen, Xingjia;Jiang, Hui;Zhang, Guangzhi;Li, Peng;Ding, Jiabo;Feng, Yu
关键词:Reference strain; identification; Brucella melitensis 63/9; Multiplex PCR
-
High-density genetic map construction and QTL mapping of a zigzag-shaped stem trait in tea plant (Camellia sinensis)
作者:Liu, Dingding;Ye, Yuanyuan;Tang, Rongjin;Gong, Yang;Chen, Si;Zhang, Chenyu;Mei, Piao;Chen, Jiedan;Chen, Liang;Ma, Chunlei
关键词:Tea plant; Zigzag-shaped stem trait; Genetic map; QTL; Candidate genes
-
Azospirillum isscasi sp. nov., a bacterium isolated from rhizosphere soil of rice
作者:Wang, Hui;Chen, Zhe;Li, Wenjun;Hu, Tianlong;Zhang, Yanhui;Lin, Xingwu;Xie, Zubin;Wang, Hui;Chen, Zhe;Hu, Tianlong;Jin, Haiyang;Li, Wenjun;Li, Wenjun;Ma, Jing;Liu, Qi;Zhang, Yanhui
关键词:Azospirillum; polyphasic taxonomy; fixation; indole-3-acetic acid (IAA); plant growth- promoting bacteria; paddy soil
-
Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon (Citrullus lanatus)
作者:Chen, Sheng;Bai, Changhui;Xue, Zhuzheng;Wu, Yufen;Zhong, Kaiqin;Li, Yongyu
关键词:watermelon; drought; RNA-Seq; metabolomic; WGCNA
-
Optimization of medium compositions and X-ray irradiation to enhance monacolin K production by Monascus purpureus in submerged fermentation
作者:Ye, Fanyu;Zhang, Chenyu;Liu, Shuai;Liu, Xinyi;Liu, Jun;Guo, Ting;Lu, Dong;Zhou, Xiang
关键词:M. purpureus; Monacolin K; X-ray mutagenesis breeding; Response surface methodology; Transcriptome analysis