Genetic dissection of N use efficiency using maize inbred lines and testcrosses
文献类型: 外文期刊
第一作者: Liu, Xiaoyang
作者: Liu, Xiaoyang;He, Kunhui;Yuan, Lixing;Mi, Guohua;Chen, Fanjun;Pan, Qingchun;Ali, Farhan;Li, Dongdong;Liu, Wenxin;Cai, Hongguang;Zhang, Hongwei;Chen, Fanjun;Pan, Qingchun
作者机构:
关键词: Maize; Nitrogen use efficiency; Heterosis; Genetic basis
期刊名称:CROP JOURNAL ( 影响因子:6.6; 五年影响因子:6.5 )
ISSN: 2095-5421
年卷期: 2023 年 11 卷 4 期
页码:
收录情况: SCI
摘要: Although the use of heterosis in maize breeding has increased crop productivity, the genetic causes underlying heterosis for nitrogen (N) use efficiency (NUE) have been insufficiently investigated. In this study, five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations (ILs) consisting of recombinant inbred lines (RIL) and advanced backcross (ABL) populations, derived from crossing Ye478 with Wu312. Both populations were crossed with P178 to construct two testcross populations. IL populations, their testcross populations, and the midparent heterosis (MPH) for NUE were investigated. Kernel weight, kernel number, and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations. Based on a highdensity linkage map, 138 quantitative trait loci (QTL) were mapped, each explaining 5.6%-38.8% of genetic variation. There were 52, 34 and 52 QTL for IL populations, MPH, and testcross populations, respectively. The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci. A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL. Genome-wide prediction of NUE traits in the testcross populations showed 14%-51% accuracy. Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE. & COPY; 2023 Crop Science Society of China and Institute of Crop Science, CAAS. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
Quantitative Determination of Cd Using Energy Dispersion XRF Based on Gaussian Mixture Clustering-Multilevel Model Recalibration
作者:Gao, Yunbing;Zhao, Yanan;Pan, Yuchun;Sun, Wenbin;Zhao, Xiande;Liu, Xiaoyang;Li, Xue;Mao, Xuefei
关键词:
-
Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1
作者:Khan, Ilyas;Li, Sunan;Tao, Lihong;Wang, Chong;Liu, Xiaoyang;Ahmad, Iqbal;Su, Wenqiang;Zhong, Gongxun;Wen, Zhiyuan;Wang, Jinliang;Hua, Rong-Hong;Wan, Xiao-Peng;Bu, Zhi-Gao;Ye, Bowei;Li, Huiyu;Ma, Ao;Liang, Jie;Zheng, Yong-Hui
关键词:
-
Fine-Tuning Quantitative Trait Loci Identified in Immortalized F2 Population Are Essential for Genomic Prediction of Hybrid Performance in Maize
作者:Wang, Pingxi;Ma, Xingye;Jin, Xining;Wu, Xiangyuan;Zhang, Xiaoxiang;Zhang, Huaisheng;Wang, Hui;Chen, Shilin;Zhang, Hongwei;Fu, Junjie;Xie, Yuxin
关键词:maize; plant height; immortalized F-2 population; genomic prediction
-
EgMADS3 directly regulates EgLPAAT to mediate medium-chain fatty acids (MCFA) anabolism in the mesocarp of oil palm
作者:Wang, Yaning;Yan, Jinqi;Zheng, Yusheng;Li, Dongdong;Zou, Jixin
关键词:Oil palm; EgMADS3; Fatty acid metabolism; Lipid synthesis; MCFA
-
The Spartina alterniflora genome sequence provides insights into the salt-tolerance mechanisms of exo-recretohalophytes
作者:Chen, Shoukun;Du, Tingting;Huang, Zhangping;He, Kunhui;Yang, Maogeng;Gao, Shang;Yu, Tingxi;Zhang, Hao;Liu, Chun-Ming;Li, Huihui;Chen, Shoukun;Du, Tingting;Huang, Zhangping;He, Kunhui;Yang, Maogeng;Gao, Shang;Yu, Tingxi;Zhang, Hao;Li, Huihui;Chen, Shoukun;Yang, Maogeng;Chen, Shihua;Li, Xiang;Li, Xiang;Liu, Chun-Ming;Liu, Chun-Ming;Liu, Chun-Ming
关键词:Spartina alterniflora; genome; salinity adaptation; evolution; glutathione metabolism
-
ZmHDT103 Negatively Regulates Drought Stress Tolerance in Maize Seedlings
作者:Wang, Xiaodong;Peng, Yunling;Zheng, Jun;Guo, Yuhang;Wang, Yiru;Zhang, Hongwei;Zheng, Jun
关键词:maize; ZmHDT103; CRISPR/Cas9; drought stress
-
RESEARCH ARTICLE Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3-and NH4+supply
作者:Wang, Peng;Dong, Rui;Wu, Yuanhua;Wang, Peng;Yang, Lan;Sun, Xichao;Shi, Wenjun;Dong, Rui;Mi, Guohua;Yang, Lan;Sun, Xichao
关键词:maize; NO3-/NH4+ratio; lateral root elongation; N assimilation; indole-3-acetic acid